Let be a homogeneous tree in which every vertex lies on edges, where . Let be the group of automorphisms of , and let be the its subgroup , where is a local field whose residual field has order . We consider the restriction to of a continuous irreducible unitary representation of . When is spherical or special, it was well known that remains irreducible, but we show that when is cuspidal, the situation is much more complicated. We then study in detail what happens when the minimal subtree of is the smallest possible.
Sia un albero omogeneo dove a ogni vertice si incontrano spigoli. Sia il gruppo di automorfismi di e un sottogruppo chiuso isomorfo a ( campo locale il cui campo residuo ha ordine ). Sia una rappresentazione continua unitaria e irriducibile di e si consideri , la sua restrizione ad . È noto che se è una rappresentazione sferica o speciale rimane irriducibile. In questo lavoro si mostra che quando è cuspidale la situazione è molto più complessa. Si studia in dettagli o il caso in cui il sotto albero minimale associato a sia il più piccolo possibile, ottenendo una esplicita decomposizione di .
@article{BUMI_2003_8_6B_2_353_0, author = {Donald I. Cartwright and Gabriella Kuhn}, title = {Restricting cuspidal representations of the group of automorphisms of a homogeneous tree}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {353-379}, zbl = {1177.43008}, mrnumber = {1988210}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_2_353_0} }
Cartwright, Donald I.; Kuhn, Gabriella. Restricting cuspidal representations of the group of automorphisms of a homogeneous tree. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 353-379. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_2_353_0/
[1] 55, Cambridge University Press, 1997. | MR 1431508 | Zbl 0868.11022
, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics:[2] | MR 171173 | Zbl 0152.32902
, Les -algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.[3] Analyse harmonique sur les paires de Gelfand et les spaces hyperboliques, Analyse Harmonique Nancy 1980, CIMPA, Nice1983. | Zbl 0569.43002
,[4] 162, Cambridge University Press, Cambridge, 1991. | MR 1152801 | Zbl 1154.22301
- , Harmonic analysis and representation theory for groups acting on homogeneous trees, London Mathematical Society Lecture Note Series[5] | MR 1397028 | Zbl 0857.43001
, A course in abstract harmonic analysis, CRC Press, Boca Raton, 1995.[6] On the principal series of over -adic fields, Trans. Amer. Math Soc., 177 (1973), 275-296. | MR 327982 | Zbl 0257.22018
,[7] 59, American Mathematical Society, 1985. | Zbl 0593.22014
, Harish-Chandra Homomorphisms for -adic groups, CBMS Regional Conference Series in Mathematics, No.[8] The representation theory of the symmetric group, Encyclopedia of Mathematics and its applications, volume 16, Addison-Wesley, 1981. | MR 644144 | Zbl 0491.20010
- ,[9] On the supercuspidal representations of , Amer. J. Math., 100 (1978), 43-60. | MR 507253 | Zbl 0417.22012
,[10] | MR 396826 | Zbl 0344.22002
, The theory of unitary group representations, University of Chicago Press, Chicago, 1976.[11] Representations of groups of automorphisms of trees, Usp. Mat. Nauk, 303 (1975), 169-170.
,[12] Classification of irreducible representations of groups of automorphisms of Bruhat-Tits trees, Functional Anal. Appl., 11 (1977), 26-34. | MR 578650 | Zbl 0371.22014
,[13] 118, Springer Verlag (1989). | MR 971256 | Zbl 0668.46002
, Analysis now, Graduate Texts in Mathematics[14] 16, American Mathematical Society, Providence, 1983. | MR 696772
, Complex representations of for finite fields , Contemporary Mathematics, Vol. , Group theory, Prentice-Hall, 1964. , Trees, Springer Verlag, Berlin Heidelberg New York, 1980.