Given an open, bounded and connected set with Lipschitz boundary and volume , we prove that the sequence of Dirichlet functionals defined on , with volume constraints on fixed level-sets, and such that for all , -converges, as with , to the squared total variation on , with as volume constraint on the same level-sets.
Dato aperto, limitato e connesso, con frontiera Lipschitziana e volume , si prova che la successione di funzionali di Dirichlet definiti in , con vincoli di volume su insiemi di livello prescritti, tali che per ogni , -converge, quando con , al quadrato della variazione totale in , con vincoli di volume sui medesimi insiemi di livello.
@article{BUMI_2003_8_6B_2_339_0, author = {Gian Paolo Leonardi}, title = {$\Gamma$-convergence of constrained Dirichlet functionals}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {339-351}, zbl = {1177.49026}, mrnumber = {1988209}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_2_339_0} }
Leonardi, Gian Paolo. $\Gamma$-convergence of constrained Dirichlet functionals. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 339-351. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_2_339_0/
[1] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. | MR 618549 | Zbl 0449.35105
- ,[2] | MR 1736268 | Zbl 0977.49028
, Corso introduttivo alla Teoria Geometrica della Misura ed alle superfici minime, Scuola Norm. Sup., Pisa, 1997.[3] On a volume-constrained variational problem, Arch. Ration. Mech. Anal., 149 (1999), 23-47. | MR 1723033 | Zbl 0945.49005
- - - ,[4] | MR 1857292 | Zbl 0957.49001
- - , Functions of bounded variation and free discontinuity problems, The Clarendon Press Oxford University Press, New York, 2000. Oxford Science Publications.[5] Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. H. Poincare Anal. Non Lineaire, 7 (1990), 67-90. | MR 1051228 | Zbl 0702.49009
,[6] | MR 1201152 | Zbl 0816.49001
, An introduction to -convergence, Birkhauser Boston Inc., Boston, MA, 1993.[7] | MR 1158660 | Zbl 0804.28001
- , Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, Ann Harbor, 1992.[8] Flows in networks, Princeton University Press, Princeton, N.J., 1962. | MR 159700 | Zbl 0106.34802
- ,[9] | MR 1645086 | Zbl 0914.49001
- - , Cartesian currents in the calculus of variations. I, cartesian currents. II, variational integrals, Springer-Verlag, Berlin, 1998.[10] | MR 775682 | Zbl 0545.49018
, Minimal surfaces and functions of bounded variation, Birkhauser, Boston-Basel-Stuttgart, 1984.[11] Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. | MR 1404829 | Zbl 0857.76008
- - ,[12] | MR 1326605 | Zbl 0819.49024
, Geometric measure theory . A beginner's guide, Academic Press Inc., San Diego, CA, second ed., 1995.[13] Variational problems with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa (2000). | Zbl 0995.49003
- ,[14] On the dirichlet problem with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa, (2000). | MR 1899831 | Zbl 1022.35010
- ,[15] On a constrained variational problem with an arbitrary number of free boundaries, Interfaces Free Bound., 2 (2000), 201-212. | MR 1760412 | Zbl 0995.49002
,