Given an open, bounded and connected set with Lipschitz boundary and volume , we prove that the sequence of Dirichlet functionals defined on , with volume constraints on fixed level-sets, and such that for all , -converges, as with , to the squared total variation on , with as volume constraint on the same level-sets.
Dato aperto, limitato e connesso, con frontiera Lipschitziana e volume , si prova che la successione di funzionali di Dirichlet definiti in , con vincoli di volume su insiemi di livello prescritti, tali che per ogni , -converge, quando con , al quadrato della variazione totale in , con vincoli di volume sui medesimi insiemi di livello.
@article{BUMI_2003_8_6B_2_339_0,
author = {Gian Paolo Leonardi},
title = {$\Gamma$-convergence of constrained Dirichlet functionals},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {6-A},
year = {2003},
pages = {339-351},
zbl = {1177.49026},
mrnumber = {1988209},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_2_339_0}
}
Leonardi, Gian Paolo. $\Gamma$-convergence of constrained Dirichlet functionals. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 339-351. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_2_339_0/
[1] -, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. | MR 618549 | Zbl 0449.35105
[2] , Corso introduttivo alla Teoria Geometrica della Misura ed alle superfici minime, Scuola Norm. Sup., Pisa, 1997. | MR 1736268 | Zbl 0977.49028
[3] ---, On a volume-constrained variational problem, Arch. Ration. Mech. Anal., 149 (1999), 23-47. | MR 1723033 | Zbl 0945.49005
[4] --, Functions of bounded variation and free discontinuity problems, The Clarendon Press Oxford University Press, New York, 2000. Oxford Science Publications. | MR 1857292 | Zbl 0957.49001
[5] , Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. H. Poincare Anal. Non Lineaire, 7 (1990), 67-90. | MR 1051228 | Zbl 0702.49009
[6] , An introduction to -convergence, Birkhauser Boston Inc., Boston, MA, 1993. | MR 1201152 | Zbl 0816.49001
[7] -, Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, Ann Harbor, 1992. | MR 1158660 | Zbl 0804.28001
[8] -, Flows in networks, Princeton University Press, Princeton, N.J., 1962. | MR 159700 | Zbl 0106.34802
[9] --, Cartesian currents in the calculus of variations. I, cartesian currents. II, variational integrals, Springer-Verlag, Berlin, 1998. | MR 1645086 | Zbl 0914.49001
[10] , Minimal surfaces and functions of bounded variation, Birkhauser, Boston-Basel-Stuttgart, 1984. | MR 775682 | Zbl 0545.49018
[11] --, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831. | MR 1404829 | Zbl 0857.76008
[12] , Geometric measure theory . A beginner's guide, Academic Press Inc., San Diego, CA, second ed., 1995. | MR 1326605 | Zbl 0819.49024
[13] -, Variational problems with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa (2000). | Zbl 0995.49003
[14] -, On the dirichlet problem with several volume constraints on the level sets, preprint Scuola Norm. Sup. Pisa, (2000). | MR 1899831 | Zbl 1022.35010
[15] , On a constrained variational problem with an arbitrary number of free boundaries, Interfaces Free Bound., 2 (2000), 201-212. | MR 1760412 | Zbl 0995.49002