This paper is devoted to the asymptotic behaviour of quadratic forms defined on . More precisely we consider the -convergence of these functionals for the -weak topology. We give an example in which some limit forms are not Markovian and hence the Beurling-Deny representation formula does not hold. This example is obtained by the homogenization of a stratified medium composed of insulating thin-layers.
Questo articolo riguarda il comportamento asintotico delle forme quadratiche definite in . Più precisamente consideriamo la -convergenza di questi funzionali per la topologia debole di . Noi diamo un esempio in cui certe forme limite non sono Markoviane e quindi la formula di Beurling-Deny non si applica. Questo esempio è ottenuto tramite l'omogeneizzazione di un materiale stratificato composto da strati sottili isolanti.
@article{BUMI_2003_8_6B_2_323_0, author = {Marc Briane}, title = {Non-Markovian quadratic forms obtained by homogenization}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {323-337}, zbl = {1150.35009}, mrnumber = {1988208}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_2_323_0} }
Briane, Marc. Non-Markovian quadratic forms obtained by homogenization. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 323-337. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_2_323_0/
[1] Derivation of the double porosity model of single phase flow via homogenization theory, S.I.A.M. J. Math. Anal., 21 (1990), 823-836. | MR 1052874 | Zbl 0698.76106
- - ,[2] Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Annali della Scuola Normale Superiore di Pisa, 26, (4) (1998), 407-436. | MR 1635769 | Zbl 0919.35014
- ,[3] Homogenization of degenerate elliptic equations in a fiber structure, preprint 98/09 ANLA, Univ. Toulon.
- ,[4] Espaces de Dirichlet, Acta Matematica, 99 (1958), 203-224. | MR 98924 | Zbl 0089.08106
- ,[5] Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 208-215. | MR 106365 | Zbl 0089.08201
- ,[6] Homogenization in some weakly connected domains, Ricerche di Matematica, XLVII, no. 1 (1998), 51-94. | MR 1760323 | Zbl 0928.35037
,[7] An introduction to -convergence, Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001
,[8] Asymptotic of solution of differential equations with strongly oscillating and degenerating matrix of coefficients, Dokl. AN Ukr. SSR, 4 (1980). | Zbl 0426.35016
- ,[9] 23, North-Holland and Kodansha, Amsterdam (1980). | MR 569058 | Zbl 0422.31007
, Dirichlet Forms and Markov Processes, North-Holland Math. Library,[10] The asymptotic behavior of solutions of the second boundary value problems under fragmentation of the boundary of the domain, Maths. USSR Sbornik, 35, no. 2 (1979). | Zbl 0421.35019
,[11] Homogenized models of composite media, Composite Media and Homogenization Theory, and editors, in Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser (1991), 159-182. | MR 1145750 | Zbl 0737.73009
,[12] Mesures associées à une forme de Dirichlet. Applications, Bull. Soc. Math. de France, 106 (1978), 61-112. | Zbl 0393.31008
,[13] Composite media and asymptotic Dirichlet forms, Journal of Functional Analysis, 123, no. 2 (1994), 368-421. | MR 1283033 | Zbl 0808.46042
,