The present paper is devoted to sufficient conditions for existence of equilibria of Lipschitz multivalued maps in prescribed subsets of finite-dimensional spaces. The main improvement of the present study lies in the fact that we do not suppose any regular assumptions on the boundary of the subset. Our approach is based on behaviour of trajectories to the corresponding differential inclusion.
L'articolo fornisce delle condizioni sufficienti per l' esistenza di punti di equilibrio di applicazioni multivoche Lipschitziane in assegnati sottoinsiemi di spazi finito-dimensionali. Il principale contributo del presente articolo consiste nel fatto che non si danno condizioni di regolarità sulla frontiera degli insiemi considerati. L'approccio è basato sullo studio del comportamento delle traiettorie della corrispondente inclusione differenziale.
@article{BUMI_2003_8_6B_2_309_0, author = {Grzegorz Gabor and Marc Quincampoix}, title = {On existence of equilibria of set-valued maps}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {309-321}, zbl = {1150.49007}, mrnumber = {1988207}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_2_309_0} }
Gabor, Grzegorz; Quincampoix, Marc. On existence of equilibria of set-valued maps. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 309-321. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_2_309_0/
[1] | MR 755330 | Zbl 0538.34007
- , Differential Inclusions, Springer, 1984.[2] | MR 1134779 | Zbl 0755.93003
, Viability Theory, Birkhäuser, Boston, 1991.[3] Équilibres dans les ensembles nonconvexes, C. R. Acad. Sci. Paris Sér. I, 320 (1995), 573-576. | MR 1322339 | Zbl 0833.54024
- ,[4] Equilibria of set-valued maps on nonconvex domains, Trans. Amer. Math. Soc., 349 (1997), 4159-4179. | MR 1401763 | Zbl 0887.47040
- ,[5] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Institut Fourier, Grenoble, 19, 1 (1969), 277-304. | MR 262881 | Zbl 0176.09703
,[6] The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301. | MR 229101 | Zbl 0176.45204
,[7] | MR 283793 | Zbl 0216.19601
, The Lefschetz Fized Point Theorem, Scott, Foresman and Comp., Glenview Ill., London1971.[8] Sufficient conditions of nonemptiness of the viability kernel, PhD Thesis, Chapter 8, Université Paris IX Dauphine, 1992. | MR 1166049 | Zbl 0761.34016
,[9] Conditions suffisantes de non-vacuité du noyau de viabilité, C. R. Acad. Sci., Paris, Ser. I, 314, 11 (1992), 797-800. | MR 1166049 | Zbl 0761.34016
,[10] Fixed points and equilibria in nonconvex sets, Nonlinear Analysis, 25 (1995), 145-161. | MR 1333819 | Zbl 0840.49010
- - ,[11] | MR 1488695 | Zbl 1047.49500
- - - , Nonsmooth Analysis and Control Theory, Springer, 1998.[12] Paris avec handicaps et théorèmes de surjectivité de correspondances, C. R. Acad. Sc. Paris Sér. A, 281 (1975), 479-482. | MR 386726 | Zbl 0317.90087
,[13] Existence of (generalized) equilibria: necessary and sufficient conditions, Comm. Appl. Nonlinear Anal., 7 (2000), 21-53. | MR 1733400 | Zbl 1108.49301
- ,[14] Equilibria of set-valued maps: variational approach, Nonlinear Anal. TMA (accepted). | Zbl 1030.49021
- ,[15] | MR 193606 | Zbl 0144.21501
, Topology, Allyn and Bacon, Inc., Boston, 1966.[16] Foundations of Algebraic Topology, Princeton Univ. Press, New Jersey, 1952. | MR 50886 | Zbl 0047.41402
- ,[17] Fixed point and minimax theorems in locally convex topological spaces, Proc. Nat. Acad. Sci. USA, 38 (1952), 121-126. | MR 47317 | Zbl 0047.35103
,[18] Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537. | MR 735533 | Zbl 0515.47029
,[19] Periodic solutions of functional differential inclusions and fixed points -selectionable correspondances, J. Math. Anal. Appl., 96 (1983), 295-312. | MR 719317 | Zbl 0539.34031
- ,[20] 47, PWN, Warszawa, 1999. | MR 1675402 | Zbl 0913.00021
- - (editors), Conley index theory, Banach Center Publ.,[21] Periodic and stationary trajectories of flows and ordinary differential equations, Zesz. Nauk. Uniw. Jagiellon. 860, Acta Math., 27 (1988), 29-37. | MR 982424 | Zbl 0684.34046
,[22] On the solution sets of differential inclusions, Boll. Un. Mat. Ital. (7), 6-A (1992), 387-394. | MR 1196133 | Zbl 0774.34012
,[23] Frontières de domaines d'invariance et de viabilité pour les inclusions différentielles avec contraintes, C. R. Acad. Sci., Paris, 311 (1990), 411-416. | MR 1075661 | Zbl 0705.34014
,[24] Differential inclusions and target problems, SIAM J. Control Optimization,30 (1992), 324-335. | MR 1149071 | Zbl 0862.49006
,[25] Periodic and bounded solutions in blocks for time periodic nonautonomous ordinary differential equations, Nonlinear Anal. TMA, 22 (1994), 707-737. | MR 1270166 | Zbl 0801.34041
,[26] Lipschitz continuity of the value function in optimal control, J. Optimization Theory Appl., 94, 2 (1997), 335-361. | MR 1460669 | Zbl 0901.49022
,