A set of lines of is said to cover a point of times if there are exactly lines of incident with . An -cover of is a set of lines of which covers each point of times. In this paper, the properties and known examples of -covers are reviewed and it is demonstrated how -covers of can be used to construct classes of quasi--multiple Sperner designs. Finally, motivated by the problem of deriving these designs to arrive at new examples, the notion of regular -covers of is introduced. The main results of the paper are that no regular -covers of exist for and that no regular -covers exist whenever .
Si dice che un insieme di rette di copre volte un punto di , se esistono esattamente rette di incidenti . Un insieme di rette di che copre volte ogni punto di si dice -cover. In questa nota, dopo una descrizione degli esempi noti di -cover e delle rispettive proprietà, viene mostrato come gli -cover di possono essere utilizzati per la costruzione di classi di disegni di Sperner quasi--multipli. Infine, allo scopo di ottenere nuovi esempi di tali disegni mediante la derivazione di quelli esistenti, si introduce la nozione di n-cover regolare. I risultati principali sono: la dimostrazione della non esistenza di un -cover regolare di per e quella della non esistenza di un -cover regolare per .
@article{BUMI_2003_8_6B_1_57_0, author = {Martin Oxenham and Rey Casse}, title = {Towards the determination of the regular $n$-covers of $PG(3,q)$}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {57-87}, zbl = {1177.51007}, mrnumber = {1955697}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_1_57_0} }
Oxenham, Martin; Casse, Rey. Towards the determination of the regular $n$-covers of $PG(3,q)$. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 57-87. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_1_57_0/
[1] Even order inversive planes, generalized quadrangles and codes, Geom. Dedicata, 22 (1987), 137-147. | MR 877206 | Zbl 0609.51011
- ,[2] Intersection patterns of the classical ovoids in symplectic 3-space of even order, J. Algebra, 126 (1989), 147-160. | MR 1023290 | Zbl 0685.51006
- ,[3] 439, University of North Carolina, 1965.
, SOME TOPICS IN FINITE GEOMETRICAL STRUCTURESInstitute of Statistics Mimeo Series,[4] On parallelisms in finite projective spaces, Geom. Dedicata., 3 (1974), 35-40. | MR 341270 | Zbl 0282.50019
,[5] On -covers in finite projective spaces, J. Geom., 12, no. 1 (1979), 10-16. | MR 521135 | Zbl 0369.05020
,[6] | MR 674137 | Zbl 0488.05010
, CONSTRUCTION OF SOME IRREDUCIBLE DESIGNS, Lecture Notes in Mathematics, Springer-Verlag, 1981.[7] Further constructions of irreducible designs, Congr. Numer., 35 (1982), 77-79. | MR 725870 | Zbl 0513.05010
,[8] The construction of translation planes from projective spaces, J. Algebra, 1 (1964), 85-102. | MR 161206 | Zbl 0117.37402
- ,[9] Construction problems of finite projective planes, in: Combinatorial Mathematics and its Applications, University of North Carolina Press, Chapel Hill, 1969. | MR 250182 | Zbl 0206.23402
,[10] Spreads which are not dual spreads, Canad. Math. Bull., 12, no. 6 (1969). | MR 256257 | Zbl 0186.54303
- ,[11] 43, Cambridge University Press. | MR 579788 | Zbl 0427.05001
- , Graphs, codes and designs, London Mathematical Society Lecture Note Series,[12] Some packings of projective spaces, Atti Accad. Naz. Lincei Rend., 52 (1972), 36-40. | MR 331207 | Zbl 0239.50013
,[13] Cyclic packings of the projective space of order 8, Atti Accad. Naz. Lincei Rend., 54 (1973), 373-377. | MR 362028 | Zbl 0307.50017
,[14] Partitioning projective geometries into caps, Canad. J. Math., 37, no. 6 (1985), 1163-1175. | MR 828840 | Zbl 0571.51002
,[15] The completion problem for partial packings, Geom. Dedicata, 18 (1985), 261-267. | MR 797145 | Zbl 0566.51013
,[16] Spreads obtained from ovoidal fibrations, in: Finite Geometries, Lecture Notes In Pure And Applied Mathematics, 103, Marcel Dekker, 1985. | MR 826801 | Zbl 0577.51005
,[17] Replaceable translation nets, Proc. London Math. Soc., 22 (3) (1971), 235-264. | MR 291935 | Zbl 0212.52303
,[18] On a set of lines of corresponding to a maximal cap contained in the Klein quadric of , Geom. Dedicata, 26, no. 3 (1988). | MR 950065 | Zbl 0645.51012
,[19] | MR 224481 | Zbl 0196.02401
, Combinatorial theory, Blaisdell Publishing Company, 1967.[20] Incidence axioms for affine geometries, J. Algebra, 21 (1972), 535-547. | MR 317160 | Zbl 0252.50010
,[21] On Pellegrino's -Caps In , Annals of Discrete Mathematics, 18 (1983), 433-448. | MR 695829 | Zbl 0505.51013
,[22] Dimension in Steiner triple systems, Ann. Discrete Math., 7 (1980), 73-87. | MR 584405 | Zbl 0441.05011
- ,[23] | MR 1612570 | Zbl 0899.51002
, Projective geometries over finite fields, Clarendon Press, Oxford.[24] | MR 840877 | Zbl 0574.51001
, Finite projective spaces of three dimensions, Clarendon Press, Oxford, 1985.[25]
, The line complex, Chelsea, 1969.[26] Quasimultiples of biplanes and residual biplanes, Ars Combin., 19 (1984), 179-186. | MR 810274 | Zbl 0572.05011
,[27] Quasimultiples of projective and affine planes, J. Geom., 26 (1986). | MR 850162 | Zbl 0586.51006
,[28] Indecomposable triple systems, Discrete Math., 8 (1974), 173-180. | MR 332536 | Zbl 0276.05020
,[29] A census of Mendelsohn triple systems, Ars Combin., 4 (1977), 309-315. | MR 462968 | Zbl 0442.05006
- ,[30] Tables of parameters of BIBDS with including existence, enumeration and resolvability results, Ann. Discrete Math., 26 (1985), 275-308. | MR 833795 | Zbl 0579.05016
- ,[31] Some small quasi-multiple designs, Ars Combin., 3 (1977), 233-250. | MR 457248 | Zbl 0394.05005
,[32] Balanced ternary designs with block size three, in: Combinatorial Mathematics VII, Lecture Notes in Mathematics, 829, Springer-Verlag, 1980. | MR 611194 | Zbl 0454.05017
,[33] Su una nuova classe di spazi affini generalizzati di Sperner, Atti Accad. Naz. Lincei Rend., 59 (1975). | MR 487751 | Zbl 0342.50013
,[34] A characterization of subregular spreads in finite -space, Geom. Dedicata, 5 (1976), 43-50. | MR 470834 | Zbl 0335.50012
,[35] On a Geometric Representation of the Subgroups of Index in , Discrete Mathematics, 92 (1991), 251-259. | MR 1140591 | Zbl 0752.20002
- ,[36] On -Covers of and Related Structures, Doctoral Thesis, University of Adelaide, 1991.
,[37] On the Resolvability of Hall Triple Systems, Bolletino U.M.I., 8, 1-B (1998), 639-649. | MR 1662345 | Zbl 0918.05019
- ,[38] 110, Pitman Advanced Publishing Program, 1984. | MR 767454 | Zbl 0551.05027
- , Finite Generalized Quadrangles, Research Notes in Mathematics,[39] Sulle Calotte Massime Dello Spazio , Atti dell'Accad. di Scienze lettere e Arti di Palermo, Serie IV, Vol. XXXIV (1974-75), 297-328. | MR 465903 | Zbl 0443.51008
,[40] PRIVATE COMMUNICATION, 1990.
,[41] Regular Packings of , Europ. J. Combinatorics, 19 (1998), 713-720. | MR 1642722 | Zbl 0920.51006
- ,[42] The Cyclic Parallelisms of , Europ. J. Combinatorics, 19 (1998), 613-616. | MR 1637760 | Zbl 0907.51004
,[43] Cyclical generation of linear subspaces in finite geometries, Conference on Combinatorial Mathematics and its Applications, (University of North Carolina, 1967), University of North Carolina Press, 1969, 515-535. | MR 249317 | Zbl 0211.53203
,[44] A class of finite Sperner spaces, Abh. Math. Sem. Univ. Hamburg, 42 (1974). | MR 358538 | Zbl 0295.50031
,[45] Teoria di Galois, fibrazioni proiettive e geometrie non Desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76. | MR 169117 | Zbl 0128.15002
,[46] A theorem in finite geometry and some applications to number theory, Trans. Amer. Math. Soc., 43 (1938), 377-385. | JFM 64.0972.04 | MR 1501951
,[47] | JFM 35.0020.01
, Collected mathematical papers, I. Cambridge University Press, (1904).[48] On linear spaces in which every plane is either projective or affine, Geom. Dedicata, 4 (1975), 39-44. | MR 384567 | Zbl 0309.50014
,[49] Combinatorial properties of planar spaces and embeddability, J. Combin. Theory A., 43 (1986), 291-302. | MR 867653 | Zbl 0605.51009
,[50] | MR 1725957 | Zbl 0914.51005
, Generalized Polygons, Monographs in Mathematics, Birkhäuser, 1998.[51] A double affine plane of order , J. Combin. Theory A., 56 (1991), 166-171. | MR 1082850 | Zbl 0748.05023
,