The -regularity of the gradient of local minima for nonlinear functionals is shown.
In questo lavoro si studia la -regolarità del gradiente dei minimi locali per funzionali non-lineari.
@article{BUMI_2003_8_6B_1_39_0, author = {Josef Dan\v e\v cek and Eugen Viszus}, title = {$L^{2,\lambda}$-regularity for minima of variational integrals}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {39-48}, zbl = {1139.49001}, mrnumber = {1955695}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_1_39_0} }
Daněček, Josef; Viszus, Eugen. $L^{2,\lambda}$-regularity for minima of variational integrals. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 39-48. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_1_39_0/
[1] Sistemi ellittici in forma divergenza. Regolarita all'interno, Quaderni, Pisa, 1980. | MR 668196 | Zbl 0453.35026
,[2] | MR 990890 | Zbl 0703.49001
, Dirict methods in the calculus of variations, Springer-Verlag, Berlin, 1989.[3] Regularity of minima of variational integrals, Math. Slovaca, 49, 3 (1999), 345-356. | MR 1728244 | Zbl 0961.49022
- ,[4] 105, Princenton university press, Princeton, 1983. | MR 717034 | Zbl 0516.49003
, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studied N.[5] Differentiability of minima non-differentiable functionals, Invent. math., 72 (1983), 285-298. | MR 700772 | Zbl 0513.49003
- ,[6] Quasiminima, Ann. Inst. Henri Poincare, 1 (1984), 79-107. | MR 778969 | Zbl 0541.49008
- ,[7] | MR 1707291 | Zbl 0942.49002
, Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana, Officine Grafiche Tecnoprint, Bologna, 1994.[8] Sulla regularita delle soluzioni di equazioni ellittiche negli spazi , Ann. Sc. Norm. Sup. Pisa, 21 (1967), 527-545. | MR 223723 | Zbl 0157.42203
- ,[9] | MR 482102
- - , Function spaces, Academia, Prague, 1977.[10] Qusiminimi di alcuni funzionali degeneri, preprint no. 9 (1984).
,[11] | MR 227584
, Les methodes directes en theorie des equationes elliptiques, Academia, Prague, 1967.[12] Some function spaces defined using the mean oscillation over cubes, Ann. Sc. Norm. Sup. Pisa, 19 (1965), 593-608. | MR 190729 | Zbl 0199.44303
,