The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces , where is a Köthe sequence space and is an arbitrary separable Banach space, is studied. Namely, the question of whether or not this geometric property lifts from and to is examined. It is settled affirmatively in contrast to the case when is a Köthe function space. As a corollary we get criteria for to be nearly uniformly convex.
Viene studiata la proprietà uniforme di Kadec-Klee in spazi sequenziali di Kothe-Bochner , dove è uno spazio sequenziale di Kothe e è un arbitrario spazio di Banach separabile. Precisamente, viene esaminato il problema se questa proprietà geometrica si può trasportare da in . Ciò viene stabilito in contrasto con il caso in cui è uno spazio di Kothe. Come corollario viene stabilito un criterio affichè sia «nearly» uniformemente convesso.
@article{BUMI_2003_8_6B_1_221_0, author = {Pawe\l\ Kolwicz}, title = {Uniform Kadec-Klee property and nearly uniform convexity in K\"othe-Bochner sequence spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {221-235}, zbl = {1178.46008}, mrnumber = {1955707}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_1_221_0} }
Kolwicz, Paweł. Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 221-235. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_1_221_0/
[1] New convexity and fixed point properties in Hardy and Lebesgue-Bochner spaces, J. Functional Analysis, 119 (1993), 340-357. | MR 1261096 | Zbl 0804.46044
- - - ,[2] Lattice Theory, Providence, RI1967. | MR 227053 | Zbl 0153.02501
,[3] The property (H) in Köthe-Bochner spaces, C. R. Acad. Sci. Paris, Serie I, 319 (1994), 1159-1163. | MR 1309093 | Zbl 0824.46042
- ,[4] Geometric properties of Köthe Bochner spaces, Math. Proc. Cambridge Philos Soc., 120 (1996), 521-533. | MR 1388204 | Zbl 0867.46024
- - ,[5] A note on -points in in Köthe-Bochner spaces, Acta Math. Hungar., 94, 1-2 (2002), 59-66. | MR 1905787 | Zbl 1003.46019
- ,[6] Complete characterizations of Kadec-Klee properties in Orlicz space, Houston J. Math. to appear. | MR 2045669 | Zbl 1155.46305
- - - ,[7] Representation of additive functionals on vector-valued normed Köthe spaces, Kodai Math. J., 2 (1979), 300-313. | MR 553237 | Zbl 0431.46025
,[8] On geometric properties of Orlicz-Lorentz spaces, Canad. Math. Bull. vol., 40 (1997), 316-329. | MR 1464840 | Zbl 0903.46014
- - ,[9] Monotonicity and rotundity properties in Banach lattices, Rocky Mountain J. Math., 30 (2000), 933-949. | MR 1797824 | Zbl 0979.46012
- - ,[10] Characteristic of convexity of Köthe function spaces, Math. Ann., 294 (1992), 117-124. | MR 1180454 | Zbl 0761.46016
- ,[11] Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math., 10 (1980), 743-749. | MR 595102 | Zbl 0505.46011
,[12] | MR 511615 | Zbl 0555.46001
- , Functional Analysis, Nauka (Moscow, 1977) (in Russian).[13] -convexity of Bochner-Orlicz spaces, Proc. Amer. Math. Soc., 126 8 (1998), 2315-2322. | MR 1443391 | Zbl 0896.46019
- ,[14] A note on property (H) in Köthe-Bochner sequence spaces, Math. Japonica, 46, No. 3 (1997), 407-412. | MR 1487289 | Zbl 0911.46003
- ,[15] Nearly uniform convexity of infinite direct sums, Indiana Univ. Math. J., 41 (1992), 915-926. | MR 1206336 | Zbl 0790.46013
- ,[16] Köthe Bochner Function Spaces, to appear. | MR 2018062 | Zbl 1054.46003
,[17] | MR 540367 | Zbl 0852.46015
- , Classical Banach spaces I, Springer-Verlag (1979).[18] | MR 540367 | Zbl 0403.46022
- , Classical Banach spaces II, Springer-Verlag (1979).[19] On nearly uniformly convex Banach spaces, Math. Proc. Camb. Phil. Soc., 93 (1983), 127-129. | MR 684281 | Zbl 0507.46011
,[20] Points of local uniform rotundity in Köthe Bochner spaces, Arch. Math., 70 (1998), 479-485. | MR 1621994 | Zbl 0916.46022
,[21] Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc., 257 (1980), 105-118. | MR 549157 | Zbl 0368.46039
- ,[22] On the uniform Kadec-Klee property with respect to convergence in measure, J. Austral. Math. Soc., 59 (1995), 343-352. | MR 1355225 | Zbl 0854.46015
,