Let be a compact quasi self-similar set in a complete metric space and let denote the space of all probability measures on , endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in the lower concentration dimension is equal to , while the upper concentration dimension is equal to the Hausdorff dimension of .
Sia un sottoinsieme quasi similare compatto di uno spazio metrico completo. Sia lo spazio delle misure di probabilità su munito della metrica di Fortet-Mourier. Si dimostra che per una misura tipica (nel senzo della categoria di Baire) la dimensione inferiore di concentrazione è uguale a zero, invece la dimensione superiore di concentrazione è uguale alla dimensione di Hausdorff dell'insieme .
@article{BUMI_2003_8_6B_1_211_0, author = {J\'ozef Myjak and Tomasz Szarek}, title = {Some generic properties of concentration dimension of measure}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {211-219}, zbl = {1177.28014}, mrnumber = {1955706}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_1_211_0} }
Myjak, Józef; Szarek, Tomasz. Some generic properties of concentration dimension of measure. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 211-219. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_1_211_0/
[1] Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106 (1989), 543-554. | MR 969315 | Zbl 0683.58034
,[2] A typical measure typically has no local dimension, Real Anal. Exchange, 23 (1997/1998), 525-537. | MR 1639964 | Zbl 0943.28008
,[3] Dimension and structure of typical compact sets, continua and curves, Mh. Math., 108 (1989), 149-164. | MR 1026615 | Zbl 0666.28005
,[4] | MR 331448 | Zbl 0323.60015
- , Concentration Functions, Academic Press, New York-London (1973).[5] Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747. | MR 625600 | Zbl 0598.28011
,[6] On a dimension of measures, Bull. Pol. Ac. Math.2002. | Zbl 1020.28004
- ,[7] A note on Hausdorff measures of quasi self-similar sets, Proc. Amer. Math. Soc., 100 (1987), 183-186. | MR 883425 | Zbl 0629.28006
,[8] Box and packing dimension of typical compact sets, Monatsh. Math., 131 (2000), 223-226. | MR 1801749 | Zbl 0967.28003
- ,[9] On the typical structure of compact sets, Arch. Math., 76 (2001), 119-126. | MR 1811289 | Zbl 0981.46018
- ,[10] Typical properties of correlation dimension (to appear). | MR 2009754 | Zbl 1048.37020
- ,[11] Szpilrajn type theorem for concentration dimension of measure, Fund. Math., 172 (2002), 19-25. | MR 1898400 | Zbl 0994.37011
- ,[12] Seminar on conformal and hyperbolic geometry, Lecture Notes, Inst. Hautes Etudes Sci., Bures-sur-Yvette1982.
,[13] On the Box Dimension of Typical Measures, Monatsh. Math., 136 (2002), 143-150. | MR 1914225 | Zbl 1001.28002
- ,[14] Generic properties of Markov operators, Rend. Circ. Matem. Palermo (to appear). | Zbl 1118.37011
- ,