In this work we study the existence, uniqueness and decay of solutions to a class of viscoelastic equations in a separable Hilbert space given by \begin{gather*} u_{tt} + M([u]) Au - \int_{0}^{t} g(t-\tau) N([u]) Au \, d\tau = 0, \quad \text{ in } L^{2}(0, T; H) \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1} \end{gather*} where by we are denoting \begin{equation*} [u(t)]= \left( ( u(t), u_{t}(t), (Au(t), u_{t}(t)), \|A^{\frac{1}{2}} u(t) \|^{2}, \|A^{\frac{1}{2}} u_{t}(t) \|^{2}, \|A u(t) \|^{2} \right) \in \mathbb{R}^{5} \end{equation*} is a nonnegative, self-adjoint operator, , are - functions and is a -function with appropriates conditions. We show that there exists global solution in time for small initial data. When and , we show the global existence for large initial data taken in the space provided they are close enough to Gevrey data. Uniform rate of decay is also proved.
In questo lavoro si studia l'esistenza, l'unicità e il decadimento di soluzioni a una classe di equazioni viscoelastiche in uno spazio di Hilbert separabile, dato da: \begin{gather*} u_{tt} + M([u]) Au - \int_{0}^{t} g(t-\tau) N([u]) Au \, d\tau = 0, \quad \text{ in } L^{2}(0, T; H) \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1} \end{gather*} dove con si denota \begin{equation*} [u(t)]= \left( ( u(t), u_{t}(t), (Au(t), u_{t}(t)), \|A^{\frac{1}{2}} u(t) \|^{2}, \|A^{\frac{1}{2}} u_{t}(t) \|^{2}, \|A u(t) \|^{2} \right) \in \mathbb{R}^{5} \end{equation*} è un operatore autoaggiunto non-negativo, , sono funzioni di classe e è una funzione di classe verificante condizioni opportune. Mostriamo che esistono soluzioni globali nel tempo per piccoli dati iniziali. Quando , e , si mostra l'esistenza globale per grandi dati iniziali presi negli spazi a condizione che siano abbastanza prossimi a dati analitici. È anche dimostrato un tasso uniforme di decadimento.
@article{BUMI_2003_8_6B_1_1_0, author = {Jaime E. Mu\~noz Rivera and F\'elix P. Quispe G\'omez}, title = {Existence and decay in non linear viscoelasticity}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {1-37}, zbl = {1177.74082}, mrnumber = {1955694}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_1_1_0} }
Muñoz Rivera, Jaime E.; Quispe Gómez, Félix P. Existence and decay in non linear viscoelasticity. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 1-37. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_1_1_0/
[1] Global solution of the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear partial differential equations an their applications, College de France Seminar, Edited by & , Pitman, London, 6 (1984), 1-26. | Zbl 0598.35062
- ,[2] Sur une classe d'equations fonctionnelles aux dérivées partielles, Izv. Akad. Nauk SSSR, ser. Mat., 4 (1940), 17-26 (Math. Rev. 2 No. 102). | JFM 66.0471.01 | MR 2699 | Zbl 0026.01901
,[3] An Abstract Volterra Equation with application to linear Viscoelasticity, J. Differential Equations, 7 (1970), 554-589. | MR 259670 | Zbl 0212.45302
,[4] Energy methods for non linear hyperbolic Volterra integro-differential equation, Comm. PDE, 4 (1979), 219-278. | MR 522712 | Zbl 0464.45009
- ,[5] Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262. | MR 1161092 | Zbl 0785.35067
- ,[6] Infinite systems of nonlinear oscillation equation related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468. | MR 247189 | Zbl 0218.34015
,[7] Infinite systems of nonlinear oscillation equations with linear damping, SIAM Journal of Applied Mathematics, 19, No. 1 (1970), 208-214. | MR 265654 | Zbl 0233.34014
,[8]
- , Fonctions Généralisées, IV, Academic Press, 1961.[9] The initial value problem for the stretched string, Quarterly of Applied Mathematics (1980), 289-311. | MR 592197 | Zbl 0487.73006
- ,[10] | MR 473900 | Zbl 0334.47015
, Décomposition spectrale et opérateurs, Presses Universitaires de France, 1977.[11] 91, 1989, Birhäuser, Verlag, Bassel. | MR 1033061 | Zbl 0699.93070
, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, International series of Numerical Mathematics,[12] | MR 259693 | Zbl 0189.40603
, Quelques méthodes de resolution des problèmes aux limites non lineares, Dunod Gauthier Villars, Paris, 1969.[13] | Zbl 0766.47001
- , Mathematical Analysis and Numerical Methods for science and Tecnology, 3, Spectral Theory and Applications, Springer Verlag1985, Masson, Paris, 1988.[14] On a nonlinear wave equation with damping, Revista de Matemática de la Universidad Complutense de Madrid, 3, No. 2 (1990). | MR 1081312 | Zbl 0721.35044
- ,[15] On global classical solution of a nonlinear wave equation with damping, Appl. Anal., 10 (1980), 179-195. | MR 577330 | Zbl 0441.35037
,[16] Asymptotic behaviour in Linear Viscoelasticity, Quarterly of Applied Mathematics, III, 4, (1994), 629-648. | Zbl 0814.35009
,[17] Global Solution on a Quasilinear Wave Equation with Memory, Bollettino U.M.I. (7), 8-b (1994), 289-303. | MR 1278337 | Zbl 0802.45006
,[18] Degenerate quasilinear hyperbolic equation with strong damping, Funkcialaj Ekvacioj, 27 (1984), 125-145. | MR 763940 | Zbl 0555.35094
,[19] Global existence and Asymptotic behaviour of the solution of some quasilinear hyperbolic equation with linear damping, Funkcialaj Ekvacioj, 32 (1989), 343-355. | MR 1040163 | Zbl 0702.35165
,[20] On a class of quasilinear hyperbolic equation, Math. USSR-Sb., 25-1 (1975), 145-158.
,[21] Mathematical problems in Viscoelasticity, Pitman monograph in Pure and Applied Mathematics, 35, 1987. | MR 919738 | Zbl 0719.73013
- - ,[22] On a Quasilinear Wave Equation with memory, Nonlinear Analysis, Theory and Methods & Applications, 16, 1 (1991), 61-78. | Zbl 0738.35096
- ,