For a knot with a strong inversion induced by an unknotting tunnel, we have a double covering projection branched over a trivial knot , where is the axis of . Then a set is called a -curve. We construct -curves and the cyclic branched coverings over -curves, having two non-isotopic Heegaard decompositions which are one stable equivalent.
Per un nodo con un'inversione forte indotta da un tunnel di scioglimento abbiamo una proiezione che è un ricoprimento doppio ramificato sopra un nodo banale , dove è l'asse . Allora un insieme è chiamato -curva. Costruiamo -curve e i ricoprimenti ciclici ramificati sopra -curve, che hanno due decomposizioni di Heegaard non isotopiche che sono uno stabilmente equivalenti.
@article{BUMI_2003_8_6B_1_199_0, author = {Soo Hwan Kim and Yangkok Kim}, title = {$\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {199-209}, zbl = {1150.57002}, mrnumber = {1955705}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_1_199_0} }
Kim, Soo Hwan; Kim, Yangkok. $\theta$-curves inducing two different knots with the same $2$-fold branched covering spaces. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 199-209. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_1_199_0/
[1] Heegaard splittings of prime -manifolds are not unique, Michingan Math. J., 23 (1976), 97-103. | MR 431175 | Zbl 0321.57004
- - ,[2] Heegaard splittings of branched coverings of , Trans. Amer. Math. Soc., 270 (1975), 315-352. | MR 380765 | Zbl 0312.55004
- ,[3] Reducing Heegaard splittings, Topology and its applications, 27 (1987), 273-275. | MR 918537 | Zbl 0632.57010
- ,[4] Cyclic presentations and -manifolds, Proceedings of Groups- Korea 94' (edited by and ) (1979), 47-55. | MR 1476948 | Zbl 0871.20026
,[5] Heegaard splittings of the Brieskorn homology spheres that are equivalent after one stabilization, Note di Mathematica, 20 (1) (2000/2001), 53-63. | MR 1885314 | Zbl 1026.57002
- ,[6] A construction of 3-manifolds whose homeomorphism classes of Heegaard splittings have polynomial growth, Osaka Journal of Math., 29 (1992), 653-674. | MR 1192734 | Zbl 0785.57005
,[7] Identifying tunnel number one knots, J. Math. Soc. Japan, 48 (4) (1996), 667-688. | MR 1404816 | Zbl 0869.57008
- - ,[8] On the branched coverings of spatial -graphs, Knots 90 (by Walter de Gruyter), Berlin New York (1992), 103-116. | MR 1177415 | Zbl 0779.57001
,[9] An infinite collection of Heegaard splittings that are equivalent after one stabilization, Mathematisch Annalen, 308 (1997), 65-72. | MR 1446199 | Zbl 0873.57010
,[10] Dunwoody -manifolds and -decomposiable knots, Proc. Workshop in pure math (edited by and ), Geometry and Topology, 19 (2000), 193-211.
- ,[11] Two knots with the same -fold branched covering space, Yokohama Math. J., 25 (1977), 91-99. | MR 461484 | Zbl 0411.57001
,[12] The knotting of theta curves and other graphs in , in Geometry and Topology (edited by and ) Marcel Dekker, New York (1987) 325-346. | MR 873302 | Zbl 0613.57003
,