Let be a star-operation on and the finite character star-operation induced by . The purpose of this paper is to study when or . In particular, we prove that if every prime ideal of is -invertible, then , and that if is a unique -factorable domain, then is a Krull domain.
Sia uno star-operatore su e lo star-operatore di carattere finito indotto da . Lo scopo di questo lavoro è studiare quando o . In particolare, proviamo che se ogni ideale primo di è -invertibile, allora e che se è un dominio a -fattorizzazione unica, allora è un dominio di Krull.
@article{BUMI_2003_8_6B_1_141_0, author = {Gyu Whan Chang and Jeanam Park}, title = {Star-invertible ideals of integral domains}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {141-150}, zbl = {1177.13006}, mrnumber = {1955701}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_1_141_0} }
Chang, Gyu Whan; Park, Jeanam. Star-invertible ideals of integral domains. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 141-150. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_1_141_0/
[1] On -invertibility, IV, Factorization in Integral Domains, Lecture Notes in Pure and Applied Math., Marcel Dekker, 189 (1997), 221-225. | MR 1460774 | Zbl 0882.13001
- ,[2] A general theory of class groups, Comm. Algebra, 16 (4) (1988), 805-847. | MR 932636 | Zbl 0648.13002
,[3] Factorable domains, to appear in Comm. Algebra. | MR 1936459 | Zbl 1088.13512
- - ,[4] | MR 427289 | Zbl 0248.13001
, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.[5] On -invertibility, II, Comm. Algebra, 17 (1989), 1955-1969. | MR 1013476 | Zbl 0717.13002
- ,[6] | MR 114810 | Zbl 0101.27502
, Les systèmes d'Idéaux, Dunod, Paris, 1960.[7] On the converse of a well-known fact about Krull domains, J. Algebra, 124 (1989), 284-299. | MR 1011595 | Zbl 0694.13011
,[8] Prüfer -multiplication domains and the ring , J. Algebra, 123 (1989), 151-170. | MR 1000481 | Zbl 0668.13002
, , Commutative Rings, revised edition, Univ. of Chicago Press, 1974.