Star-invertible ideals of integral domains
Chang, Gyu Whan ; Park, Jeanam
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 141-150 / Harvested from Biblioteca Digitale Italiana di Matematica

Let be a star-operation on R and s the finite character star-operation induced by . The purpose of this paper is to study when =v or s=t. In particular, we prove that if every prime ideal of R is -invertible, then =v, and that if R is a unique -factorable domain, then R is a Krull domain.

Sia uno star-operatore su R e s lo star-operatore di carattere finito indotto da . Lo scopo di questo lavoro è studiare quando =v o s=t. In particolare, proviamo che se ogni ideale primo di R è -invertibile, allora =v e che se R è un dominio a -fattorizzazione unica, allora R è un dominio di Krull.

Publié le : 2003-02-01
@article{BUMI_2003_8_6B_1_141_0,
     author = {Gyu Whan Chang and Jeanam Park},
     title = {Star-invertible ideals of integral domains},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {141-150},
     zbl = {1177.13006},
     mrnumber = {1955701},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_1_141_0}
}
Chang, Gyu Whan; Park, Jeanam. Star-invertible ideals of integral domains. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 141-150. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_1_141_0/

[1] Anderson, D. D.-Zafrullah, M., On t-invertibility, IV, Factorization in Integral Domains, Lecture Notes in Pure and Applied Math., Marcel Dekker, 189 (1997), 221-225. | MR 1460774 | Zbl 0882.13001

[2] Anderson, D. F., A general theory of class groups, Comm. Algebra, 16 (4) (1988), 805-847. | MR 932636 | Zbl 0648.13002

[3] Anderson, D. F.-Kim, H.-Park, J., Factorable domains, to appear in Comm. Algebra. | MR 1936459 | Zbl 1088.13512

[4] Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. | MR 427289 | Zbl 0248.13001

[5] Houston, E.-Zafrullah, M., On t-invertibility, II, Comm. Algebra, 17 (1989), 1955-1969. | MR 1013476 | Zbl 0717.13002

[6] Jaffard, P., Les systèmes d'Idéaux, Dunod, Paris, 1960. | MR 114810 | Zbl 0101.27502

[7] Kang, B. G., On the converse of a well-known fact about Krull domains, J. Algebra, 124 (1989), 284-299. | MR 1011595 | Zbl 0694.13011

[8] Kang, B. G., Prüfer v-multiplication domains and the ring RXNv, J. Algebra, 123 (1989), 151-170. | MR 1000481 | Zbl 0668.13002

[9] Kaplansky, I., Commutative Rings, revised edition, Univ. of Chicago Press, 1974. | MR 345945 | Zbl 0296.13001