In this paper we consider a class of integral functionals whose integrand satisfies growth conditions of the type \begin{gather*} f(x, \eta, \xi) \geq a(x) \frac{|\xi|^{p}}{(1 + |\eta|)^{\alpha}} - b_{1}(x)|\eta|^{\beta_{1}}-g_{1}(x),\\ f(x, \eta, 0)\leq b_{2}(x)|\eta|^{\beta_{2}}+ g_{2}(x), \end{gather*} where , , , , , , (, ) are nonnegative functions satisfying suitable summability assumptions. We prove the existence and boundedness of minimizers of such a functional in the class of functions belonging to the weighted Sobolev space , which assume a boundary datum .
In questo lavoro si considera una classe di funzionali integrali, il cui integrando verifica le seguenti condizioni \begin{gather*} f(x, \eta, \xi) \geq a(x) \frac{|\xi|^{p}}{(1 + |\eta|)^{\alpha}} - b_{1}(x)|\eta|^{\beta_{1}}-g_{1}(x),\\ f(x, \eta, 0)\leq b_{2}(x)|\eta|^{\beta_{2}}+ g_{2}(x), \end{gather*} dove , , , , , , (, ) sono funzioni non negative che soddisfano opportune ipotesi di sommabilità. Si dimostra l'esistenza e la limitatezza di minimi di tali funzionali nella classe di funzioni appartenenti allo spazio di Sobolev pesato , che assumono un assegnato dato al bordo .
@article{BUMI_2003_8_6B_1_125_0, author = {A. Mercaldo}, title = {Existence and boundedness of minimizers of a class of integral functionals}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {125-139}, zbl = {1150.49001}, mrnumber = {1955700}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_1_125_0} }
Mercaldo, A. Existence and boundedness of minimizers of a class of integral functionals. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 125-139. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_1_125_0/
[AFT] A priori estimates for a class of non uniformly elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 381-391. | MR 1645729 | Zbl 0911.35025
- - ,[BO] Existence and regularity of minima for integral functionals noncoercive in the energy space, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 95-130. | MR 1655511 | Zbl 1015.49014
- ,[BDO] Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51-58. | MR 1645710 | Zbl 0911.35049
- , ,[C1] Local minimizers and rearrangements, Appl. Math. Optim., 27 (1993), 261-274. | MR 1201624 | Zbl 0801.35005
,[C2] Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations, 22 (1997), 1629-1646. | MR 1469584 | Zbl 0892.35048
,[CS] A priori sharp estimates for minimizers, Boll. Un. Mat. Ital., 7-B (1993), 821-831. | MR 1255649 | Zbl 0833.49001
- ,[DG]
, Teoremi di semicontinuità nel calcolo delle variazioni, Lectures Notes, INDAM1968.[GP1] Existence results for some non uniformly elliptic equations with irregular data, J. Math. Anal. Appl., 257 (2001), 100-130. | MR 1824669 | Zbl 0999.35027
- ,[GP2] Regularity results for some elliptic equations with degenerate coercivity, Preprint.
- ,[G] | MR 1707291
, Metodi diretti nel calcolo delle Variazioni, UMI, 1994.[LU] | Zbl 0164.13001
- , Equations aux dérivées partielles de type elliptic, Dunod, Paris, 1968.[M] | MR 817985
, Sobolev spaces, Springer-Verlag, Berlin (1985).[Me] Boundedness of minimizers of degenerate functionals, Differential Integral Equations, 9 (1996), 541-556. | MR 1371706 | Zbl 0858.49006
,[MS] Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl., 90 (1971), 1-122. | MR 249828 | Zbl 0185.19201
- ,[S] An -estimates for the minima of functionals of the calculus of variations., Differential Integral Equations, 2 (1989), 383-421. | MR 983684 | Zbl 0719.49009
,[T] Boundedeness of minimizers, Hokkaido Math. Jour., 19 (1990), 259-279. | MR 1059170 | Zbl 0723.58015
,[Tr] Existence and regularity for a class of non uniformly elliptic equations in two dimensions, Differential Integral Equations, 13 (2000), 687-706. | MR 1750046 | Zbl 0980.35054
,