The paper is devoted to the study of the ordered set of all, up to equivalence, -compactifications of an Alexandroff space . The notion of -weight (denoted by ) of an Alexandroff space is introduced and investigated. Using results in ([7]) and ([5]), lattice properties of and are studied, where is the set of all, up to equivalence, -compactifications of for which . A characterization of the families of bounded functions generating an -compactification of is obtained. The notion of -determining family of functions, analogous to the one of determining family given in ([3]), is introduced and relations with the original notion are investigated. A characterization of the families of functions which -determine a given -compactification is found. The cardinal invariant , corresponding to the cardinal invariant defined in ([3]), is introduced and studied.
Questo lavoro riguarda l'insieme ordinato delle -compattificazioni di uno spazio di Alexandroff . Si definisce e si studia l'«-peso» dello spazio e, sulla base di risultati in [7], [5], si presentano proprietà reticolari di e di , l'insieme delle -compattificazioni di tali che . Si caratterizzano le famiglie di funzioni continue limitate che generano una -compattificazione di . In analogia con definizioni e risultati in [3], si introducono e si studiano la nozione di famiglia di funzioni che «-determina» una -compattificazione e l'invariante cardinale (minima cardinalità di una famiglia che -determina ).
@article{BUMI_2002_8_5B_3_839_0, author = {A. Caterino and G. Dimov and M. C. Vipera}, title = {$A$-compactifications and $A$-weight of Alexandroff spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {839-858}, zbl = {1169.54349}, mrnumber = {1934385}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_839_0} }
Caterino, A.; Dimov, G.; Vipera, M. C. $A$-compactifications and $A$-weight of Alexandroff spaces. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 839-858. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_839_0/
[1] Additive set functions in abstract spaces, Mat. Sbornik, 50 (1940), 307-348. | JFM 66.0218.01 | MR 4078
,[2] | MR 390985 | Zbl 0282.54005
- , Normal topological spaces, Cambridge University Press, 1974.[3] Compactifications determined by subsets of , Top. Appl., 13 (1982), 1-13. | MR 637422 | Zbl 0464.54023
- ,[4] Extensions of zero sets and of real valued functions, Math. Zeit., 136 (1974), 41-52. | MR 385793 | Zbl 0264.54011
- ,[5] Weight of a Compactification and Generating Sets of Functions, Rend. Sem. Mat. Univ. Padova, 79 (1988), 37-47. | MR 964018 | Zbl 0657.54020
- ,[6] | MR 515002 | Zbl 0338.54001
, Hausdorff Compactifications, Marcel Dekker, New York, 1976.[7] On Bicompact Extensions of Tychonoff Spaces, Mh. Math., 88 (1979), 211-218. | MR 553730 | Zbl 0432.54021
,[8] Compactifications, -compactifications and Proximities, Annali Mat. Pura ed Appl., IV-169 (1995), 88-108. | MR 1378471 | Zbl 0881.54028
- ,[9] | MR 1039321 | Zbl 0684.54001
, General Topology, Heldermann, Berlin, 1989.[10] Compactifications and semi-normal spaces, Amer. J. Math., 86 (1964), 602-607. | MR 166755 | Zbl 0129.38101
,[11] | MR 116199 | Zbl 0093.30001
- , Rings of continuous functions, Van Nostrand, 1960.[12] Rings of functions determined by zero-sets, Pacific J. Math., 36 (1971), 133-187. | MR 320996 | Zbl 0185.38803
,[13] On inverse-closed subalgebras of , Proc. London Math. Soc., 19 (1969), 233-257. | MR 244948 | Zbl 0169.54005
,[14] Cozero fields, Conferenze Seminario Matem. Univ. Bari, 75 (1980). | MR 618363 | Zbl 0486.54019
,[15] A note on certain subalgebras of , Canad. J. Math., 20 (1968), 389-393. | MR 222647 | Zbl 0162.26702
- ,[16] Algebras of uniformly continuous functions, Ann. of Math., 68 (1958), 96-125. | MR 103407 | Zbl 0081.11101
,[17] | MR 506523 | Zbl 0419.03028
, Set Theory, Academic Press, New York, San Francisco, London, 1978.[18] Wallman and -compactifications, Duke Math. J., 35 (1968), 269-275. | MR 227942 | Zbl 0177.25202
- ,[19] Nest generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc., 148 (1970), 589-601. | MR 263032 | Zbl 0194.54602
- ,[20] Normal families and completely regular spaces, Duke Math. J., 33 (1966), 743-745. | MR 199835 | Zbl 0151.29604
,