A-compactifications and A-weight of Alexandroff spaces
Caterino, A. ; Dimov, G. ; Vipera, M. C.
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 839-858 / Harvested from Biblioteca Digitale Italiana di Matematica

The paper is devoted to the study of the ordered set AKX,α of all, up to equivalence, A-compactifications of an Alexandroff space X,α. The notion of A-weight (denoted by awX,α) of an Alexandroff space X,α is introduced and investigated. Using results in ([7]) and ([5]), lattice properties of AKX,α and AKαwX,α are studied, where AKαwX,α is the set of all, up to equivalence, A-compactifications Y of X,α for which wY=awX,α. A characterization of the families of bounded functions generating an A-compactification of X,α is obtained. The notion of A-determining family of functions, analogous to the one of determining family given in ([3]), is introduced and relations with the original notion are investigated. A characterization of the families of functions which A-determine a given A-compactification is found. The cardinal invariant aδY,t, corresponding to the cardinal invariant δY,t defined in ([3]), is introduced and studied.

Questo lavoro riguarda l'insieme ordinato AKX,α delle A-compattificazioni di uno spazio di Alexandroff X,α. Si definisce e si studia l'«A-peso» awX,α dello spazio X,α e, sulla base di risultati in [7], [5], si presentano proprietà reticolari di AKX,α e di AKαwX,α, l'insieme delle A-compattificazioni Y,t di X,α tali che wY=awX,α. Si caratterizzano le famiglie di funzioni continue limitate che generano una A-compattificazione di X,α. In analogia con definizioni e risultati in [3], si introducono e si studiano la nozione di famiglia di funzioni che «A-determina» una A-compattificazione Y,t e l'invariante cardinale aδY,t (minima cardinalità di una famiglia che A-determina Y,t).

Publié le : 2002-10-01
@article{BUMI_2002_8_5B_3_839_0,
     author = {A. Caterino and G. Dimov and M. C. Vipera},
     title = {$A$-compactifications and $A$-weight of Alexandroff spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {839-858},
     zbl = {1169.54349},
     mrnumber = {1934385},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_839_0}
}
Caterino, A.; Dimov, G.; Vipera, M. C. $A$-compactifications and $A$-weight of Alexandroff spaces. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 839-858. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_839_0/

[1] Alexandroff, A. D., Additive set functions in abstract spaces, Mat. Sbornik, 50 (1940), 307-348. | JFM 66.0218.01 | MR 4078

[2] Alo, R. A.-Shapiro, H. L., Normal topological spaces, Cambridge University Press, 1974. | MR 390985 | Zbl 0282.54005

[3] Ball, B. J.-Yokura, S., Compactifications determined by subsets of C*X, Top. Appl., 13 (1982), 1-13. | MR 637422 | Zbl 0464.54023

[4] Blair, R. L.-Hager, A. W., Extensions of zero sets and of real valued functions, Math. Zeit., 136 (1974), 41-52. | MR 385793 | Zbl 0264.54011

[5] Caterino, A.-Vipera, M. C., Weight of a Compactification and Generating Sets of Functions, Rend. Sem. Mat. Univ. Padova, 79 (1988), 37-47. | MR 964018 | Zbl 0657.54020

[6] Chandler, R., Hausdorff Compactifications, Marcel Dekker, New York, 1976. | MR 515002 | Zbl 0338.54001

[7] Chigogidze, A., On Bicompact Extensions of Tychonoff Spaces, Mh. Math., 88 (1979), 211-218. | MR 553730 | Zbl 0432.54021

[8] Dimov, G.-Tironi, G., Compactifications, A-compactifications and Proximities, Annali Mat. Pura ed Appl., IV-169 (1995), 88-108. | MR 1378471 | Zbl 0881.54028

[9] Engelking, R., General Topology, Heldermann, Berlin, 1989. | MR 1039321 | Zbl 0684.54001

[10] Frink, O., Compactifications and semi-normal spaces, Amer. J. Math., 86 (1964), 602-607. | MR 166755 | Zbl 0129.38101

[11] Gillman, L.-Jerison, M., Rings of continuous functions, Van Nostrand, 1960. | MR 116199 | Zbl 0093.30001

[12] Gordon, H., Rings of functions determined by zero-sets, Pacific J. Math., 36 (1971), 133-187. | MR 320996 | Zbl 0185.38803

[13] Hager, A. W., On inverse-closed subalgebras of CX, Proc. London Math. Soc., 19 (1969), 233-257. | MR 244948 | Zbl 0169.54005

[14] Hager, A. W., Cozero fields, Conferenze Seminario Matem. Univ. Bari, 75 (1980). | MR 618363 | Zbl 0486.54019

[15] Hager, A. W.-Johnson, D. G., A note on certain subalgebras of CX, Canad. J. Math., 20 (1968), 389-393. | MR 222647 | Zbl 0162.26702

[16] Isbell, J. R., Algebras of uniformly continuous functions, Ann. of Math., 68 (1958), 96-125. | MR 103407 | Zbl 0081.11101

[17] Jech, T., Set Theory, Academic Press, New York, San Francisco, London, 1978. | MR 506523 | Zbl 0419.03028

[18] Steiner, A. K.-Steiner, E. F., Wallman and Z-compactifications, Duke Math. J., 35 (1968), 269-275. | MR 227942 | Zbl 0177.25202

[19] Steiner, A. K.-Steiner, E. F., Nest generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc., 148 (1970), 589-601. | MR 263032 | Zbl 0194.54602

[20] Steiner, E. F., Normal families and completely regular spaces, Duke Math. J., 33 (1966), 743-745. | MR 199835 | Zbl 0151.29604