We consider the hyperspace of nonempty closed subsets of completely metrizable space endowed with the Wijsman topologies . If is separable and , are two metrics generating the topology of , every countable set closed in has isolated points in . For , this implies a theorem of Costantini on topological completeness of . We show that for nonseparable the hyperspace may contain a closed copy of the rationals. This answers a question of Zsilinszky.
Consideriamo sugli spazi dei sottoinsiemi chiusi e non vuoti di uno spazio completamente metrizzabile la topologia di Wijsman . Se è separabile, mostriamo che, per ogni metrica , su , ogni insieme chiuso e numerabile in ha punti isolati in . Se , questo implica il teorema di Costantini sulla completezza topologica di . Per non-separabili, rispondiamo ad una questione sollevata da Zsilinszky, mostrando che in molti casi gli spazi contengono copie chiuse dei razionali.
@article{BUMI_2002_8_5B_3_827_0, author = {J. Chaber and R. Pol}, title = {Note on the Wijsman hyperspaces of completely metrizable spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {827-832}, zbl = {1098.54006}, mrnumber = {1934383}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_827_0} }
Chaber, J.; Pol, R. Note on the Wijsman hyperspaces of completely metrizable spaces. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 827-832. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_827_0/
[1] | MR 1269778 | Zbl 0792.54008
, Topologies on closed and closed convex sets, Kluwer Academic Publishers, Dordrecht, 1993.[2] Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc., 123 (1995), 2569-2574. | MR 1273484 | Zbl 0831.54014
,[3] On the hyperspace of a non-separable metric space, Proc. Amer. Math. Soc., 126 (1998), 3393-3396. | MR 1618729 | Zbl 0898.54012
,[4] The integers in topology, Handbook of Set-Theoretic Topology ( and , eds.) North Holland, Amsterdam 1984, 116-167. | MR 776622 | Zbl 0561.54004
,[5] On -compact spaces, Bull. Acad. Pol. Sci., 6 (1958), pp. 429-439. | MR 97042 | Zbl 0083.17402
- ,[6] | MR 1321597 | Zbl 0819.04002
, Classical Descriptive Set Theory, Springer Verlag, New York, 1994.[7] Polishness of the Wijsman topology revisited, Proc. Amer. Math. Soc., 126 (1998), pp. 3763-3765. | MR 1458275 | Zbl 0899.54009
,