A characterization of the essential spectrum and applications
Jeribi, Aref
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 805-825 / Harvested from Biblioteca Digitale Italiana di Matematica

In this article the essential spectrum of closed, densely defined linear operators is characterized on a large class of spaces, which possess the Dunford-Pettis property or which isomorphic to one of the spaces LpΩp>1. A practical criterion guaranteeing its stability, for perturbed operators, is given. Further we apply the obtained results to investigate the essential spectrum of one-dimensional transport equation with general boundary conditions. Finally, sufficient conditions in terms of boundary and collision operators assuring the invariance of the essential spectrum of the streaming operator are discussed.

In questo articolo lo spettro essenziale di operatori lineari chiusi e densamente definiti è caratterizzato in una grande classe degli spazi, che possiedono la proprietà di Dunford-Pettis o che sono isomorfi ad uno degli spazi LpΩp>1. È dato un test di verifica pratico che garantisce la sua stabilità, per gli operatori perturbati. Inoltre applichiamo i risultati ottenuti per studiare lo spettro essenziale dell'equazione unidimensionale di trasporto con gli stati di contorno generali. Per concludere, sono discusse le condizioni sufficienti in termini di contorno e di operatori di scontro che assicurano l'invarianza dello spettro essenziale dell'operatore di flusso continuo.

Publié le : 2002-10-01
@article{BUMI_2002_8_5B_3_805_0,
     author = {Aref Jeribi},
     title = {A characterization of the essential spectrum and applications},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {805-825},
     zbl = {1099.47501},
     mrnumber = {1934382},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_805_0}
}
Jeribi, Aref. A characterization of the essential spectrum and applications. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 805-825. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_805_0/

[1] Boulanouar, M.-Leboucher, L., Une équation de transport dans la dynamique des populations cellulaires, C. R. Acad. Sci. Paris, Serie I, 321 (1995), 305-308. | MR 1346131 | Zbl 0835.92025

[2] Dautray, R.-Lions, J. L., Analyse Mathématique et Calcul Numérique, Tome 9, Masson, Paris, 1988.

[3] Diestel, J., A survey of results related to Dunfor-Pettis property, in «Contemporary Math. 2, Amer. Math. Soc. of Conf. on Integration, Topology and Geometry in Linear Spaces» (1980), 15-60. | MR 621850 | Zbl 0571.46013

[4] Dunford, N. AND Pettis, , Linear operations on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392. | JFM 66.0556.01 | MR 2020

[5] Dunford, N.-Schwartz, J. T., Linears operators, Part 1, Interscience Publishers Inc., New York, 1958. | MR 117523 | Zbl 0084.10402

[6] Bohberg, I.-Markus, A.-Feldman, I. A., Normally solvable operators and ideals associated with them, Amer. Math. Soc. Transl. ser. 2, 61 (1967), 63-84. | Zbl 0181.40601

[7] Goldbert, S., Unbounded Linear Operators, McGraw-Hill, New-York, 1966. | Zbl 0148.12501

[8] Greenberg, W.-Van Der Mee, G.-Protopopescu, V., Boundary Value Problems in Abstract Kinetic Theory, Birkhauser, Basel, 1987. | MR 896904 | Zbl 0624.35003

[9] Greiner, G., Spectral properties and asymptotic behaviour of the linear transport equation, Math. Z., 185 (1984), 167-177. | MR 731337 | Zbl 0567.45001

[10] Grothendieck, A., Sur les applications linéaires faiblement compactes d'espaces du type CK, Canad. J. Math., 5 (1953), 129-173. | MR 58866 | Zbl 0050.10902

[11] Gustafson, K.-Weidmann, J., On the essential spectrum, J. Math. Anal. Appl., 25, 6 (1969), 121-127. | MR 242004 | Zbl 0189.44104

[12] Jeribi, A., Quelques remarques sur les opérateurs de Frédholm et application à l'équation de transport, C. R. Acad. Sci. Paris, Série I, 325 (1997), 43-48. | MR 1461395 | Zbl 0883.47006

[13] Jeribi, A., Quelques remarques sur le spectre de Weyl et applications, C. R. Acad. Sci. Paris, Série I, 327 (1998), 485-490. | MR 1652578 | Zbl 0932.47002

[14] Jeribi, A.-Latrach, K., Quelques remarques sur le spectre essentiel et application à l'équation de transport, C. R. Acad. Sci. Paris, Série I, 323 (1996), 469-474. | MR 1408978 | Zbl 0861.47001

[15] Jörgen, K., Linear integral operator, Pitman. Advanced publishing program (1982).

[16] Kaper, H. G.-Lekkerkerker, C. G.-Hejtmanek, J., Spetral Methods in Linear Transport Theory, Birkhauser, Basel, 1982. | MR 685594 | Zbl 0498.47001

[17] Kato, T., Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), 261-322. | MR 107819 | Zbl 0090.09003

[18] Latrach, K., Compactness properties for linear transport operator with abstract boundary conditions in slab geometry, Trans. Theor. Stat. Phys., 22 (1993), 39-65. | MR 1198878 | Zbl 0774.45006

[19] Latrach, K., Some remarks on the essential spectrum of transport operators with abstract boundary conditions, J. Math. Phys., 35 (1994), 6199-6212. | MR 1299947 | Zbl 0819.47068

[20] Latrach, K., Time asymptotic behaviour for linear transport equation with abstract boundary conditions in slab geometry, Trans. Theor. Stat. Phys., 23 (1994), 633-670. | MR 1272677 | Zbl 0816.45008

[21] Latrach, K., Description of the real point spectrum for a class of neutron transport operators, Trans. Theor. Stat. Phys., 23 (1993), 595-630. | MR 1229293 | Zbl 0786.45010

[22] Latrach, K., Quelques propriétés spectrales d'opérateurs de transport avec des conditions aux limites abstraites, C. R. Acad. Sci. Paris, Série I, 320 (1995), 809-814. | MR 1326687 | Zbl 0827.35108

[23] Latrach, K., Essential spectra on spaces with the Dunfor-Pettis property, J. Math. Anal. Appl., 233 (1999), 607-722. | MR 1689610 | Zbl 0930.47008

[24] Latrach, K.-Jeribi, A., On the essential spectrum of transport operators on L1- spaces, J. Math. Phys., 37 (1996), 6486-6494. | MR 1419181 | Zbl 0876.47002

[25] Latrach, K.-Jeribi, A., Sur une équation de transport intervenanten dynamique des populations, C. R. Acad. Sci. Paris, Série I, 325 (1997), 1087-1109. | MR 1614016 | Zbl 0897.35020

[26] Latrach, K.Jeribi, A., A nonlinear boundary value problem arising in growing cell populations, Nonli. Anal., Ser. A, Theory methods, 36 (7) (1999), 843-862. | MR 1682848 | Zbl 0935.35170

[27] Latrach, K.-Jeribi, A., Some results on Fredholm operators, essential spectra, and application, J. Math. Anal., 225 (1998), 461-485. | MR 1644272 | Zbl 0927.47007

[28] Lebowitz, J. L.-Rubinow, S. I., A theory for the age and generation time distribution of a microbial population, J. Math. Biol., 1 (1974), 17-36. | MR 496810 | Zbl 0402.92023

[29] Lindenstrauss, J.-Tzafriri, L., Classical Banach Spaces I, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR 500056 | Zbl 0362.46013

[30] Milman, V. D., Some properties of strictly singular operators, Functional Ana. Appl., 3 (1969), 77-78. | MR 241997 | Zbl 0179.17801

[31] Mokhtar-Kharroubi, M., Spectral theory of the neutron transport operator in bounded geometries, Trans. Theor. Stat. Phys., 16 (1987), 467-502. | MR 906915 | Zbl 0629.45011

[32] Mokhtar-Kharroubi, M., Time asymptotic behaviour and compactness in neutron transport theory, Europ. J. of Mech., B Fluid, 11 (1992), 39-68. | MR 1151539

[33] Palczewski, A., Spectral properties of the space nonhomogeneous linearized Boltzmann operator, Transp. Theor. Stat. Phys., 13 (1984), 409-430. | MR 759864 | Zbl 0585.47023

[34] Pelczynski, A., Strictly singular and cosingular operators, Bull. Acad. Polon. Sci., 13 (1965), 31-41. | MR 177300 | Zbl 0138.38604

[35] Rotenberg, M., Transport theory for growing cell populations, J. Theor. Biol., 103 (1983), 181-199. | MR 713945

[36] Schechter, M., Principles of functional analysis, Academic Press, 1971. | MR 445263 | Zbl 0211.14501

[37] Schechter, M., Spectra of Partial Differential Operators, Horth-Holland, Amsterdam, 1971. | MR 447834 | Zbl 0225.35001

[38] Schechter, M., On the essential spectrum of an arbitrary operator, J. Math. Anal. Appl., 13 (1965), 205-215. | MR 188798 | Zbl 0147.12101

[39] Van Der Mee, C.-Zweifel, P., A. Fokker-Plank equation for growing cell populations, J. Math. Biol., 25 (1987), 61-72. | MR 886612 | Zbl 0644.92019

[40] Vidav, I., Existence and uniqueness of nonnegative eigenfunction of the Boltzmann operator, J. Math. Anal. Appl., 22 (1968), 144-155. | MR 230531 | Zbl 0155.19203

[41] Voigt, J., Positivity in time dependent transport theory, Acta Aplicandae Mathematicae, 2 (1984), 311-331. | MR 753698 | Zbl 0579.47040

[42] Weis, L., On perturbation of Fredholm operators in Lp-spaces, Proc. Amer. Math. Soc., 67 (1977), 87-92. | MR 467377 | Zbl 0377.46016

[43] Wolf, F., On the essential spectrum of partial differential boundary problems, Comm. Pure Appl. Math., 12 (1959), 211-228. | MR 107750 | Zbl 0087.30501

[44] Wolf, F., On the invariance of the essential spectrum under a change of the boundary conditions of partial differential operators, Indag. Math., 21 (1959), 142-147. | MR 107751 | Zbl 0086.08203