Commutative monoids with zero-divisors
Rosales, J. C.
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 773-788 / Harvested from Biblioteca Digitale Italiana di Matematica

We describe algorithms for computing the nilradical and the zero-divisors of a finitely generated commutative -monoid. These algorithms will be used for deciding if a given ideal of a finitely generated commutative -monoid is prime, radical or primary.

Vengono descritti alcuni algoritmi per il calcolo del nilradicale e dei divisori dello zero di uno -monoide commutativo fintamente generato. Tali algoritmi vengono utilizzati per decidere se un ideale assegnato di uno -monoide commutativo fintamente generato è primo, radicale o primario.

Publié le : 2002-10-01
@article{BUMI_2002_8_5B_3_773_0,
     author = {J. C. Rosales},
     title = {Commutative monoids with zero-divisors},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {773-788},
     zbl = {1147.20316},
     mrnumber = {1934380},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_773_0}
}
Rosales, J. C. Commutative monoids with zero-divisors. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 773-788. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_773_0/

[1] Anderson, D. D.-Johnson, E. W., Ideal Theory in commutative semigroups, Semigroup Forum, 30 (1984), 127-158. | MR 760214 | Zbl 0533.20032

[2] Arnold, I., Ideale in kommutative Halbgruppen, Mat. Sb., 35 (1929), 401-408. | JFM 55.0681.03

[3] Chapman, S. T.-Krause, U.-Oeljeklaus, E., Monoids determined by a homogeneus linear Diophantine equation and the half factorial property, to appear in J. Pure Appl. Algebra. | MR 1775569 | Zbl 1001.11012

[4] Clifford, A. H., Arithmetic and ideal theory of commutative semigroups, Ann. of Math., 39 (1938), 594-610. | MR 1503427 | Zbl 0019.19401

[5] Clifford, A. H.-Preston, G. B., The algebraic theory of semigroups, Amer. Math. Soc., Providence, 1961. | MR 132791 | Zbl 0111.03403

[6] Geroldinger, A., On the structure and arithmetic of finitely primary monoids, Czech. Math. J., 46 (1996), 677-695. | MR 1414602 | Zbl 0879.20032

[7] Gilmer, R., Multiplicative ideal theory, Marcel Dekker, New York, 1972. | MR 427289 | Zbl 0248.13001

[8] Gilmer, R., Commutative semigroup rings, Chicago Lectures in Mathematics, 1984. | MR 741678 | Zbl 0566.20050

[9] Halter-Koch, F., Ideal systems. An introduction to multiplicative ideal theory, Marcel Dekker Inc., 1998. | MR 1828371 | Zbl 0953.13001

[10] Larsen, M. D.-Mccarthy, P. J., Multiplicative theory of ideals, Academic Press, New York and London, 1971. | MR 414528 | Zbl 0237.13002

[11] Lettl, G., Subsemigroups of finitely generated groups with divisor-theory, Monatsh. Math., 106 (1988), 205-210. | MR 971923 | Zbl 0671.20059

[12] Rédei, L., The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965. | MR 188322 | Zbl 0133.27904

[13] Rosales, J. C., Function minimum associated to a congruence on integral n-tuple space, Semigroup Forum, 51 (1995), 87-95. | MR 1337000 | Zbl 0831.20081

[14] Rosales, J. C.-García-Sánchez, P. A., Finitely generated commutative monoids, Nova Science Publishers, New York, 1999. | MR 1694173 | Zbl 0966.20028

[15] Tamura, T.-Kimura, N., On decompositions of a commutative semigroup, Kodai Math. Sem. Rep., 1954, 109-112. | MR 67106 | Zbl 0058.01503

[16] Grillet, P. A., Semigroups. An introduction to the structure theory, Dekker, 1995. | MR 1350793 | Zbl 0874.20039