We define a mapping which with each function and an admissible value of associates the function with a prescribed initial condition which minimizes the total variation in the -neighborhood of in each subinterval of . We show that this mapping is non-expansive with respect to , and , and coincides with the so-called play operator if is a regulated function.
Si definisce una mappa che associa ad ogni funzione e valore ammissibile la funzione con condizione iniziale che minimizza la variazione totale nell'-intorno di su ogni sottointervallo di . Si mostra che questa mappa è non-espansiva rispetto a , e , e che coincide con il cosiddetto operatore play se è una funzione regolata.
@article{BUMI_2002_8_5B_3_755_0, author = {Pavel Krej\v c\'\i\ and Philippe Lauren\c cot}, title = {Hysteresis filtering in the space of bounded measurable functions}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {755-772}, zbl = {1177.35125}, mrnumber = {1934379}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_755_0} }
Krejčí, Pavel; Laurençot, Philippe. Hysteresis filtering in the space of bounded measurable functions. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 755-772. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_755_0/
[1] | MR 61652 | Zbl 0056.05202
, Reelle Funktionen (German), Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.[2] 121, Springer-Verlag, New York, 1996. | MR 1411908 | Zbl 0951.74002
- , Hysteresis and phase transitions, Appl. Math. Sci.,[3] Rainflow counting and energy dissipation for hysteresis models in elastoplasticity, Euro. J. Mech. A/Solids, 15 (1996), 705-735. | MR 1412202 | Zbl 0863.73022
- - ,[4] Regulated functions, Math. Bohem., 119 (1991), 20-59. | MR 1100424 | Zbl 0724.26009
,[5] Introductory real analysis, Prentice Hall, Inc., Englewood Cliffs, 1970. | MR 267052 | Zbl 0213.07305
- ,[6] | MR 987431
- , Systems with hysteresis (Russian), Nauka, Moscow, 1983 (English edition Springer 1989).[7] 8, Gakkotosho, Tokyo, 1996. | MR 2466538 | Zbl 1187.35003
, Hysteresis, convexity and dissipation in hyperbolic equations, Gakuto Int. Ser. Math. Sci. Appl., Vol.[8] On BV-type hysteresis operators, Nonlinear Anal., 39 (2000), 79-98. | MR 1719926 | Zbl 0943.47054
- , , Differential models of hysteresis, Springer, Berlin-Heidelberg, 1994.