In this paper we consider the Neumann problem involving a critical Sobolev exponent. We investigate a combined effect of the coefficient of the critical Sobolev nonlinearity and the mean curvature on the existence and nonexistence of solutions.
In questo articolo consideriamo il problema di Neumann che richiede un'esponente di Sobolev critico. Noi investighiamo l'effetto combinato del coefficiente della non linearità critica e della curvatura media della frontiera sull'esistenza e sull'inesistenza di soluzioni.
@article{BUMI_2002_8_5B_3_715_0, author = {J. Chabrowski}, title = {Mean curvature and least energy solutions for the critical Neumann problem with weight}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {715-733}, zbl = {1097.35046}, mrnumber = {1934376}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_715_0} }
Chabrowski, J. Mean curvature and least energy solutions for the critical Neumann problem with weight. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 715-733. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_715_0/
[1] The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), 9-25. | MR 1205370 | Zbl 0836.35048
- ,[2] Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), 1-18. | MR 1301449 | Zbl 0804.35036
- ,[3] The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), 591-631. | MR 1318082 | Zbl 0847.35047
- - ,[4] Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350. | MR 1218099 | Zbl 0793.35033
- - ,[5] Characterization of concentration points and -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), 31-68. | Zbl 0814.35029
- - ,[6] Critical Sobolev exponent problem in () with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), 275-284. | MR 1081711 | Zbl 0735.35063
- ,[7] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477. | MR 709644 | Zbl 0541.35029
- ,[8] Least energy solutions of a critical Neumann problem with weight, to appear in Calc. Var. | Zbl pre01942729
- ,[9] Nonlinear elliptic equations with critical Sobolev exponent on compact riemannian manifolds, Calc. Var., 8 (1999), 293-326. | MR 1700267 | Zbl 0953.58017
,[10] Extremal functions for optimal Sobolev inequalities on compact manifolds, Calc. Var., 12 (2001), 59-84. | MR 1808107 | Zbl 0998.58008
- ,[11] The best constants problem in Sobolev inequalities, Math. Ann., 314 (1999), 327-346. | MR 1697448 | Zbl 0934.53028
,[12] Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), 623-657. | MR 896771 | Zbl 0635.35033
,[13] Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. of the Royal Society of Edinburgh, 116A (1990), 23-43. | MR 1076352 | Zbl 0724.35041
- ,[14] Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474. | MR 1658569 | Zbl 0955.35024
- ,[15] | MR 1481970 | Zbl 0866.58068
, Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, Springer (1996), 16-35.[16] Meilleures constantes dans le théorème d'inclusion de Sobolev, I.H.P. Analyse non-linéaire, 13 (1996), 57-93. | MR 1373472 | Zbl 0849.53035
- ,[17] The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), 145-201 and 45-120. | MR 834360 | Zbl 0522.49007
,[18] Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37, No. 2 (1988), 301-324. | MR 963504 | Zbl 0631.46033
- - ,[19] Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), 1-20. | MR 1174600 | Zbl 0785.35041
- - ,[20] On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851. | MR 1115095 | Zbl 0754.35042
- ,[21] Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310. | MR 1125221 | Zbl 0766.35017
,[22] On the shape of solutions for a nonlinear Neumann problem in symmetric domains, Lect. in Appl. Math., 29 (1993), 433-442. | MR 1247744 | Zbl 0797.35012
,[23] Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), 671-694. | MR 1305937 | Zbl 0817.35030
,[24] High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. of Edinburgh, 125A (1995), 1013-1029. | Zbl 0877.35050
,[25] The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), 1533-1554. | MR 1329855 | Zbl 0829.35041
,[26] Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonl. Anal. T.M.A., 27, No. 11 (1996), 1281-1306. | MR 1408871 | Zbl 0862.35040
,[27] Existence and nonexistence of -least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var., 8 (1999), 109-122. | MR 1680674 | Zbl 0928.35056
,[28] Sobolev inequalities with interior norms, Calc. Var., 8 (1999), 27-43. | MR 1666870 | Zbl 0918.35029
,