In this paper, we deal with the study of intermediate domains between a domain and a domain such that is an intersection of localizations of , namely the pair . More precisely, we study the pair and the pair , where and . We prove that, if is a Jaffard domain, then is a Jaffard pair, which generalize [5, Théorème 1.9]. We also show that if is an -domain, then is a residually algebraic pair (that is for each intermediate domain between and , if is a prime ideal of , then is algebraic over ). Moreover, the pair is if and only if is , for some properties . Lastly, we answer in the positive a question raised in [7] by D. F. Anderson and D. N. Elabidine: we show that if is a Jaffard local domain with maximal ideal , then the domain is a Jaffard domain.
In questo lavoro vengono studiati gli anelli compresi tra un dominio integro ed un suo sopranello , definito tramite una intersezione di localizzazioni di . In particolare, vengono studiate le coppie ed dove ed . Si dimostra che, se è un dominio di Jaffard, allora è una coppia di Jaffard; tale risultato generalizza [5, Théorème 1.9]. Si dimostra anche che, se è un -dominio, allora è una coppia residualmente algebrica (i.e. per ogni dominio intermedio tra e e per ogni ideale primo di , il dominio quoziente è algebrico su ). Inoltre, la coppia è se e soltanto se è , per una qualche proprietà . Infine, viene data una risposta affermativa ad una questione sollevata in [7] da D. F. Anderson e D. N. Elabidine: se è un dominio locale di Jaffard con ideale massimale , allora il dominio è un dominio di Jaffard.
@article{BUMI_2002_8_5B_3_701_0, author = {Mabrouk Ben Nasr and No\^omen Jarboui}, title = {Intermediate domains between a domain and some intersection of its localizations}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {701-713}, zbl = {1177.13016}, mrnumber = {1934375}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_701_0} }
Ben Nasr, Mabrouk; Jarboui, Noômen. Intermediate domains between a domain and some intersection of its localizations. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 701-713. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_701_0/
[1] Rings between and , Houston, J. Math., 17 (1991), 109-129. | MR 1107192 | Zbl 0736.13015
- - ,[2] Ideal transforms and overrings of a quasilocal integral domain, Ann. Univ. Ferrara, Sez. VII, Sc. Math., 32 (1986), 15-38. | MR 901583 | Zbl 0655.13002
- ,[3] On Jaffard domains, Expo. Math., 5 (1988), 145-175. | MR 938180 | Zbl 0657.13011
- - - - ,[4] Anneaux vérifiant absolument l'inégalité ou la formule de la dimension, Boll. Un. Math. Ital. B(7)6, n-1 (1992), 39-65. | MR 1164937 | Zbl 0785.13001
- ,[5] Radical valuatif et sous-extensions, Comm. Algebra., 26 (9) (1998), 2767-2787. | MR 1635917 | Zbl 0933.13008
- ,[6] Residually algebraic pairs of rings, Math. Z., 225 (1997), 49-65. | MR 1451331 | Zbl 0868.13007
- ,[7] 185 (1997), 33-44. | MR 1422464 | Zbl 0896.13009
- , Some remarks on the ring , Lect. Notes. Pure. App. Math.M. Dekker, New York,[8] Pairs of domains where all intermediate domains are Jaffard, J. Pure. Appl. Algebra, 145 (2000), 1-18. | MR 1732284 | Zbl 1079.13510
- - - ,[9] Couples d'anneaux partageant un idéal, Arch. Math., 51 (1988), 505-514. | MR 973725 | Zbl 0668.13005
,[10] Construction , , et anneaux localement ou residuellement de Jaffard, Arch. Math, vol. 54 (1990), 125-141. | MR 1035345 | Zbl 0707.13004
,[11] Integrally closed pairs, Conf. comm. Alg.Lec. Notes. Math, vol. 311, Springer-Verlag, Berlin and New York, (1973), 103-106. | MR 335490 | Zbl 0248.13005
,[12] Universally incomparable ring homomorphisms, Bull. Austral. Math. Soc., 29 (1984), 289-302. | MR 748722 | Zbl 0535.13006
- ,[13] Sur les hauteurs valuatives, Boll. Un. Mat. Ital. (7)9-B (1995), 281-297. | MR 1333963 | Zbl 0849.13002
,[14] Topologically defined classes of commutative rings, Ann. Math. Pura. Appl., 123 (1980), 331-355. | MR 581935 | Zbl 0443.13001
,[15] | MR 427289 | Zbl 0248.13001
, Multiplicative ideal theory, Marcel Dekker, New-York (1972).[16] | MR 345945 | Zbl 0296.13001
, Commutative rings, The University of Chicago press (Revised edition) (1974).[17] Strong -domains, J. Pure. Appl. Alg., 28 (1983), 249-264. | MR 701353 | Zbl 0536.13001
- ,[18] A general theory of algebraic geometry over Dedekind domains I, Am. J. Math., 78 (1956), 78-116. | MR 82725 | Zbl 0089.26403
,[19] 13, Interscience, New York, (1962). MR 27 ll--5790. | MR 155856 | Zbl 0123.03402
, Local rings, Interscience Tracts in Pure. Appl. Math, no.[20] Pairs of domains where all intermediate domains are Noetherian, Tran. Amer. Math. Soc., 195 (1974), 201-211. | MR 349665 | Zbl 0294.13010
,