Intermediate domains between a domain and some intersection of its localizations
Ben Nasr, Mabrouk ; Jarboui, Noômen
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 701-713 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper, we deal with the study of intermediate domains between a domain R and a domain T such that T is an intersection of localizations of R, namely the pair R,T. More precisely, we study the pair R,Rd and the pair R,R~, where Rd=RMMMaxR,htM=dimR and R~=RMMMaxR,htM2. We prove that, if R is a Jaffard domain, then R,Rdn is a Jaffard pair, which generalize [5, Théorème 1.9]. We also show that if R is an S-domain, then R,R~ is a residually algebraic pair (that is for each intermediate domain S between R and R~, if Q is a prime ideal of S , then S/Q is algebraic over R/QR). Moreover, the pair R,R~ is P if and only if R is P, for some properties P. Lastly, we answer in the positive a question raised in [7] by D. F. Anderson and D. N. Elabidine: we show that if R is a Jaffard local domain with maximal ideal M, then the domain R=RppM is a Jaffard domain.

In questo lavoro vengono studiati gli anelli compresi tra un dominio integro R ed un suo sopranello T, definito tramite una intersezione di localizzazioni di R. In particolare, vengono studiate le coppie R,Rd ed R,R~ dove Rd=RMMMaxR,htM=dimR ed R~=RMMMaxR,htM2. Si dimostra che, se R è un dominio di Jaffard, allora R,Rdn è una coppia di Jaffard; tale risultato generalizza [5, Théorème 1.9]. Si dimostra anche che, se R è un S-dominio, allora R,R~ è una coppia residualmente algebrica (i.e. per ogni dominio intermedio S tra R e R~ e per ogni ideale primo Q di S, il dominio quoziente S/Q è algebrico su R/QR). Inoltre, la coppia R,R~ è P se e soltanto se R è P, per una qualche proprietà P. Infine, viene data una risposta affermativa ad una questione sollevata in [7] da D. F. Anderson e D. N. Elabidine: se R è un dominio locale di Jaffard con ideale massimale M, allora il dominio R=RppM è un dominio di Jaffard.

Publié le : 2002-10-01
@article{BUMI_2002_8_5B_3_701_0,
     author = {Mabrouk Ben Nasr and No\^omen Jarboui},
     title = {Intermediate domains between a domain and some intersection of its localizations},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {701-713},
     zbl = {1177.13016},
     mrnumber = {1934375},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_701_0}
}
Ben Nasr, Mabrouk; Jarboui, Noômen. Intermediate domains between a domain and some intersection of its localizations. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 701-713. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_701_0/

[1] Anderson, D. D.-Anderson, D. F.-Zafrullah, M., Rings between DX and KX, Houston, J. Math., 17 (1991), 109-129. | MR 1107192 | Zbl 0736.13015

[2] Anderson, D. F.-Bouvier, A., Ideal transforms and overrings of a quasilocal integral domain, Ann. Univ. Ferrara, Sez. VII, Sc. Math., 32 (1986), 15-38. | MR 901583 | Zbl 0655.13002

[3] Anderson, D. F.-Bouvier, A.-Dobbs, D. E.-Fontana, M.-Kabbaj, S., On Jaffard domains, Expo. Math., 5 (1988), 145-175. | MR 938180 | Zbl 0657.13011

[4] Ayache, A.-Cahen, P.-J., Anneaux vérifiant absolument l'inégalité ou la formule de la dimension, Boll. Un. Math. Ital. B(7)6, n-1 (1992), 39-65. | MR 1164937 | Zbl 0785.13001

[5] Ayache, A.-Cahen, P.-J., Radical valuatif et sous-extensions, Comm. Algebra., 26 (9) (1998), 2767-2787. | MR 1635917 | Zbl 0933.13008

[6] Ayache, A.-Jaballah, A., Residually algebraic pairs of rings, Math. Z., 225 (1997), 49-65. | MR 1451331 | Zbl 0868.13007

[7] Anderson, D. F.-Nour El Abidine, D., Some remarks on the ring R, Lect. Notes. Pure. App. Math.M. Dekker, New York, 185 (1997), 33-44. | MR 1422464 | Zbl 0896.13009

[8] Ben Nasr, M.-Echi, O.-Izelgue, L.-Jarboui, N., Pairs of domains where all intermediate domains are Jaffard, J. Pure. Appl. Algebra, 145 (2000), 1-18. | MR 1732284 | Zbl 1079.13510

[9] Cahen, P.-J., Couples d'anneaux partageant un idéal, Arch. Math., 51 (1988), 505-514. | MR 973725 | Zbl 0668.13005

[10] Cahen, J., Construction B, I, D et anneaux localement ou residuellement de Jaffard, Arch. Math, vol. 54 (1990), 125-141. | MR 1035345 | Zbl 0707.13004

[11] Davis, E., Integrally closed pairs, Conf. comm. Alg.Lec. Notes. Math, vol. 311, Springer-Verlag, Berlin and New York, (1973), 103-106. | MR 335490 | Zbl 0248.13005

[12] Dobbs, E.-Fontana, M., Universally incomparable ring homomorphisms, Bull. Austral. Math. Soc., 29 (1984), 289-302. | MR 748722 | Zbl 0535.13006

[13] Echi, O., Sur les hauteurs valuatives, Boll. Un. Mat. Ital. (7)9-B (1995), 281-297. | MR 1333963 | Zbl 0849.13002

[14] Fontana, M., Topologically defined classes of commutative rings, Ann. Math. Pura. Appl., 123 (1980), 331-355. | MR 581935 | Zbl 0443.13001

[15] Gilmer, R., Multiplicative ideal theory, Marcel Dekker, New-York (1972). | MR 427289 | Zbl 0248.13001

[16] Kaplansky, I., Commutative rings, The University of Chicago press (Revised edition) (1974). | MR 345945 | Zbl 0296.13001

[17] Malik, S.-Mott, J. L., Strong S-domains, J. Pure. Appl. Alg., 28 (1983), 249-264. | MR 701353 | Zbl 0536.13001

[18] Nagata, M., A general theory of algebraic geometry over Dedekind domains I, Am. J. Math., 78 (1956), 78-116. | MR 82725 | Zbl 0089.26403

[19] Nagata, M., Local rings, Interscience Tracts in Pure. Appl. Math, no. 13, Interscience, New York, (1962). MR 27 ll--5790. | MR 155856 | Zbl 0123.03402

[20] Wadsworth, A. R., Pairs of domains where all intermediate domains are Noetherian, Tran. Amer. Math. Soc., 195 (1974), 201-211. | MR 349665 | Zbl 0294.13010