Sia un'algebra di quaternioni indefinita su di discriminante divisibile per un primo . Introduciamo lo spazio delle forme automorfe quaternioniche di livello e l'algebra degli operatori di Hecke che vi agisce. Utilizzando la corrispondenza di Jacquet-Langlands mostriamo che quest'algebra è un quoziente di un'algebra di Hecke classica (privata dell'operatore ). Ne deduciamo proprietà di finitezza e di compatibilità per cambiamento di base per l'algebra di Hecke quaternionica.
Let be an indefinite quaternion algebra over , of discriminant divisible by a prime . We introduce the space of quaternionic automorphic forms of level and the algebra of Heche operators acting on it. By making use of the Jacquet-Langlands correspondence we show that this algebra is a quotient of a classical Hecke algebra (without the operator). We deduce that the quaternionic Hecke algebra is free of finite rank over and that it is compatible with base change.
@article{BUMI_2002_8_5B_3_677_0, author = {Lea Terracini}, title = {Sur quelques propri\'et\'es des alg\`ebres de Hecke quaternioniques}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {677-700}, zbl = {1177.11046}, mrnumber = {1934374}, language = {fr}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_677_0} }
Terracini, Lea. Sur quelques propriétés des algèbres de Hecke quaternioniques. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 677-700. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_677_0/
[1]
, Topologie générale, Hermann, Paris, 1974.[2] | MR 643362
, Algèbre, vol. 2, Masson, Paris, 1981.[3] On representations of and the arithmetic of modular curves. In Modular forms of one variable II (1972), vol. 320 de Lecture Notes Math., Springer, pp. 107-141. | MR 340257 | Zbl 0302.22020
,[4] On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314. | MR 337789 | Zbl 0239.10015
,[5] Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc., 12 (1999), 521-567. | MR 1639612 | Zbl 0923.11085
- - ,[6] On deformation rings and Hecke rings, Ann. of Math., 144 (1996), 137-166. | MR 1405946 | Zbl 0867.11032
,[7] Decomposition of representations into tensor products. In Automorphic Forms, Representations, and L-functions (1979), vol. 33 de Proc. Symp. Pure Math., Springer, 179-183. | MR 546596 | Zbl 0414.22019
,[8] 83 de Annals of Math. Studies, Princeton Univ. Press, 1975. | MR 379375 | Zbl 0329.10018
, Automorphic forms on adele groups, vol.[9] On -adic Hecke algebras for over totally real fields, Ann. of Math., 128 (1988), 295-384. | MR 960949 | Zbl 0658.10034
,[10] 114 de Lecture Notes Math., Springer, 1970. | MR 401654 | Zbl 0236.12010
- , Automorphic forms on , vol.[11] An introduction to the deformation theory of Galois representations. In Modular Forms and Fermat's Last Theorem, , , et , Eds. Springer, 1997, 243-311. | MR 1638481 | Zbl 0901.11015
,[12] On automorphic forms on and Hecke operators, Ann. of Math., 94 (1971), 174-189. | MR 299559 | Zbl 0215.37301
,[13] | MR 1021004 | Zbl 0701.11014
, Modular forms, Springer, 1989.[14] An expansion principle for quaternionic modular forms, preprint, 1997.
,[15] A canonical map between Hecke algebras, Boll. Un. Mat. Ital. (8), 2-B (1999), 429-452. | MR 1706552 | Zbl 0933.11023
- ,[16] | MR 314766 | Zbl 0221.10029
, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten and Princeton Univ. Press, 1971.[17] Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (1995), 553-572. | MR 1333036 | Zbl 0823.11030
- ,[18] A Taylor-Wiles system for quaternionic Hecke algebras, Quaderni del Dipartimento di Matematica dell'Università di Torino, 15 (2000). | Zbl 1028.11036
,[19] 800, Springer, 1980. | Zbl 0422.12008
, Arithmétique des algèbres de quaternions, vol.[20] Quelques propriétés arithmétiques de certaines formes automorphes sur , Compositio Mathematica, 54 (1985), 121-171. | MR 783510 | Zbl 0567.10022
,[21] | Zbl 0176.33601
, Basic number theory, Springer, 1967.[22] Modular elliptic curves and Fermat last Theorem, Ann. of Math., 141 (1995), 443-551. | MR 1333035 | Zbl 0823.11029
,