We study polar locally convex spaces over a non-archimedean non-trivially valued complete field with a weak topological basis. We prove two completeness theorems and a Hahn-Banach type theorem for locally convex spaces with a weak Schauder basis.
Si studiano spazi polari localmente convessi su un non trivialmente valutato campo completo non archimedeo con una debole base topologica. Dimostriamo due teoremi di completezza e un teorema tipo Hahn-Banach per spazi localmente convessi con una debole base di Schauder.
@article{BUMI_2002_8_5B_3_667_0, author = {N. De Grande-De Kimpe and J. K\k akol and C. Perez-Garcia and W. H. Schikhof}, title = {Weak bases in $p$-adic spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {667-676}, zbl = {1072.46051}, mrnumber = {1934373}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_667_0} }
De Grande-De Kimpe, N.; Kąkol, J.; Perez-Garcia, C.; Schikhof, W. H. Weak bases in $p$-adic spaces. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 667-676. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_667_0/
[1] On the structure of locally -convex spaces with a Schauder base, Indag. Math., 34 (1972), 396-406. | MR 320689 | Zbl 0244.46005
,[2] Weakly closed subspaces and the Hahn-Banach extension property in -adic analysis, Indag. Math., 91 (1988), 253-261. | MR 964832 | Zbl 0678.46055
- ,[3] Orthogonal sequences in non-archimedean locally convex spaces, Indag. Math. N.S., 11 (2000), 187-195. | MR 1813159 | Zbl 0980.46056
- - , ,[4] The barrelled space associated with a bornological space need not be bornological, Bull. London Math. Soc., 12 (1980), 60-62. | MR 565486 | Zbl 0402.46002
,[5] On some non-archimedean closed graph theorems, In: Proc 4th Intern. Conf. on -adic Functional Analysis, Nijmegen, The Netherlands, Marcel Dekker, 192 (1997), 153-159. | MR 1459210 | Zbl 0889.46064
- ,[6] Schauder decomposition and completeness, Bull. London Math. Soc., 2 (1970), 34-36. | MR 259547 | Zbl 0196.13601
,[7] Weak Schauder bases and completeness, Proc. Roy. Irish Ac., 78 (1978), 51-54. | MR 506956 | Zbl 0388.46002
- ,[8] The weak basis theorem for -Banach spaces, Bull. Soc. Math. Belg., 45 (1993), 1-4. | MR 1314928 | Zbl 0728.46003
,[9] On the weak basis theorems for -adic locally convex spaces, In: Proc. 5th Intern. Conf. on -adic Functional Analysis, Poznań, Poland, Marcel Dekker, 207 (1999), 149-167. | MR 1702053 | Zbl 0949.46039
- ,[10] -Adic barrelledness and spaces of countable type, Indian J. Pure Appl. Math., 29 (1998), 1099-1109. | MR 1658689 | Zbl 0926.46067
- ,[11] The Orlicz-Pettis property in -adic analysis, Collect. Math., 43 (1992), 225-233. | MR 1252732 | Zbl 0788.46078
- ,[12] Non-archimedean functional analysis, Marcel Dekker, New York (1978). | MR 512894 | Zbl 0396.46061
,[13] Locally convex spaces over nonspherically complete valued fields, Bull. Soc. Math. Belg., 38 (1986), 187-224. | MR 871313 | Zbl 0615.46071
,[14] Every infinite-dimensional non-archimedean Fréchet space has an orthogonal basic sequence (to appear in Indag. Math.). | Zbl 0980.46057
,[15] Espaces localement -convexes, Indag. Math, 27 (1965), 249-289. | MR 179593 | Zbl 0133.06502
,[16] Schauder decompositions in locally convex spaces, Camb. Phil. Soc., 76 (1974), 145-152. | MR 350370 | Zbl 0283.46003
,