It is well-known that the topological defect of every Fréchet closure space is less than or equal to the first uncountable ordinal number . In the case of Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so that the topological defect is exactly . Some classical and recent results are deduced from our criterion.
È noto che il difetto topologico di ogni spazio di chiusura di Fréchet é minore o uguale al primo ordinale non numerabile . Nel caso di spazi di chiusura di Hausdorff Fréchet si ottengono alcune condizioni generali sufficienti affinché il difetto topologico sia pari a . Alcuni risultati classici e recenti sono dedotti dal nostro criterio.
@article{BUMI_2002_8_5B_3_641_0, author = {Riccardo Ghiloni}, title = {Hausdorff Fr\'echet closure spaces with maximum topological defect}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {641-665}, zbl = {1098.54510}, mrnumber = {1934372}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_641_0} }
Ghiloni, Riccardo. Hausdorff Fréchet closure spaces with maximum topological defect. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 641-665. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_641_0/
[AF] Ordinal invariants for topological spaces, Mich. Math. J., 15 (1968), 313-320. | MR 240767 | Zbl 0167.51102
- ,[Če] | Zbl 0141.39401
, Topological Spaces, Wiley, London1966.[DG1] Topologically maximal pretopologies, Stud. Math., 77 (1984), 265-281. | MR 745283 | Zbl 0487.54003
- ,[DG2] Cyrtologies of Convergences, II: Sequential Convergences, Math. Nachr., 127 (1986), 317-334. | MR 861735 | Zbl 0613.54001
- ,[Do] Topologie e strutture di convergenza, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III Ser., 14 (1960), 63-92. | MR 114201 | Zbl 0178.25502
,[Fč] On plane topologies with high sequential order, Commentat. Math. Univ. Carol., 31, 1 (1990), 33-36. | MR 1056168 | Zbl 0697.54014
,[Fr1] Spaces in which sequences suffice, Fundam. Math., 57 (1965), 107-115. | MR 180954 | Zbl 0132.17802
,[Fr2] Spaces in which sequences suffice II, Fundam. Math., 61 (1967), 51-56. | MR 222832 | Zbl 0168.43502
,[Fré] Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22 (1906), 1-74. | JFM 37.0348.02
,[Gr] The sequential defect of the cross topology is , Topology Appl., 19 (1985), 91-94. | MR 786084 | Zbl 0569.54028
,[Ha] Gestufte Raüme, Fundam. Math., 25 (1935), 486-502. | Zbl 0012.42103
,[Ku] Une méthode d'élimination des nombres transfinis des raisonnements mathématiques, Fundam. Math., 3 (1922), 76-108. | JFM 48.0205.04
,[No1] On some problems concerning multivalued convergences, Czech. Math. J., 14 (89) (1964), 548-561. | MR 176439 | Zbl 0127.38504
,[No2] On convergence spaces and their sequential envelopes, Czech. Math. J., 15 (90) (1965), 74-100. | MR 175083 | Zbl 0139.15906
,