Hausdorff Fréchet closure spaces with maximum topological defect
Ghiloni, Riccardo
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 641-665 / Harvested from Biblioteca Digitale Italiana di Matematica

It is well-known that the topological defect of every Fréchet closure space is less than or equal to the first uncountable ordinal number ω1. In the case of Hausdorff Fréchet closure spaces we obtain some general conditions sufficient so that the topological defect is exactly ω1. Some classical and recent results are deduced from our criterion.

È noto che il difetto topologico di ogni spazio di chiusura di Fréchet é minore o uguale al primo ordinale non numerabile ω1. Nel caso di spazi di chiusura di Hausdorff Fréchet si ottengono alcune condizioni generali sufficienti affinché il difetto topologico sia pari a ω1. Alcuni risultati classici e recenti sono dedotti dal nostro criterio.

Publié le : 2002-10-01
@article{BUMI_2002_8_5B_3_641_0,
     author = {Riccardo Ghiloni},
     title = {Hausdorff Fr\'echet closure spaces with maximum topological defect},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {641-665},
     zbl = {1098.54510},
     mrnumber = {1934372},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_3_641_0}
}
Ghiloni, Riccardo. Hausdorff Fréchet closure spaces with maximum topological defect. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 641-665. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_3_641_0/

[AF] Arhangel'Skiĭ, A. V.-Franklin, S. P., Ordinal invariants for topological spaces, Mich. Math. J., 15 (1968), 313-320. | MR 240767 | Zbl 0167.51102

[Če] Čech, E., Topological Spaces, Wiley, London1966. | Zbl 0141.39401

[DG1] Dolecki, S.-Greco, G. H., Topologically maximal pretopologies, Stud. Math., 77 (1984), 265-281. | MR 745283 | Zbl 0487.54003

[DG2] Dolecki, S.-Greco, G. H., Cyrtologies of Convergences, II: Sequential Convergences, Math. Nachr., 127 (1986), 317-334. | MR 861735 | Zbl 0613.54001

[Do] Dolcher, M., Topologie e strutture di convergenza, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III Ser., 14 (1960), 63-92. | MR 114201 | Zbl 0178.25502

[Fč] Frič, R., On plane topologies with high sequential order, Commentat. Math. Univ. Carol., 31, 1 (1990), 33-36. | MR 1056168 | Zbl 0697.54014

[Fr1] Franklin, S. P., Spaces in which sequences suffice, Fundam. Math., 57 (1965), 107-115. | MR 180954 | Zbl 0132.17802

[Fr2] Franklin, S. P., Spaces in which sequences suffice II, Fundam. Math., 61 (1967), 51-56. | MR 222832 | Zbl 0168.43502

[Fré] Fréchet, M., Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22 (1906), 1-74. | JFM 37.0348.02

[Gr] Greco, G. H., The sequential defect of the cross topology is ω1, Topology Appl., 19 (1985), 91-94. | MR 786084 | Zbl 0569.54028

[Ha] Hausdorff, F., Gestufte Raüme, Fundam. Math., 25 (1935), 486-502. | Zbl 0012.42103

[Ku] Kuratowski, K., Une méthode d'élimination des nombres transfinis des raisonnements mathématiques, Fundam. Math., 3 (1922), 76-108. | JFM 48.0205.04

[No1] Novák, J., On some problems concerning multivalued convergences, Czech. Math. J., 14 (89) (1964), 548-561. | MR 176439 | Zbl 0127.38504

[No2] Novák, J., On convergence spaces and their sequential envelopes, Czech. Math. J., 15 (90) (1965), 74-100. | MR 175083 | Zbl 0139.15906