We consider a Cauchy problem where , and is a non-negative function satisfying the condition: We obtain the conditions under which can be continued to all of . This depends on , and the properties of .
Consideriamo un problema di Cauchy dove , e è una funzione non negativa che soddisfa la condizione: Otteniamo le condizioni nelle quali può essere continuata in tutto . Questo dipende da , e dalle proprietà di .
@article{BUMI_2002_8_5B_2_511_0, author = {N. Chernyavskaya and L. Shuster}, title = {Classification of initial data for the Riccati equation}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {511-525}, zbl = {1072.32001}, mrnumber = {1911203}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_2_511_0} }
Chernyavskaya, N.; Shuster, L. Classification of initial data for the Riccati equation. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 511-525. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_2_511_0/
[1] Quasilinearization and Nonlinear Boundary-Value Problems, New York, 1965. | MR 178571 | Zbl 0139.10702
- ,[2] Estimates for the Green function of a general Sturm-Liouville operator and their applications, Proc. Amer. Math. Soc., 127, no. 5 (1999), 1413-1426. | MR 1625725 | Zbl 0918.34032
- ,[3] Asymptotics on the diagonal of the Green function of a Sturm-Louiville operator and its applications, J. London Math. Soc., 61 (2) (2000), 506-530. | MR 1760676 | Zbl 0959.34019
- ,[4] On the WKB-method, Different. Uravnenija25, 10 (1989), 1826-1829. | MR 1025660 | Zbl 0702.34053
- ,[5] Estimates for Green's function of the Sturm-Liouville operator, J. Diff. Eq., 111 (1994), 410-421. | MR 1284420 | Zbl 0852.34023
- ,[6] Weight summability of solutions of the Sturm-Liouville equation, J. Diff. Eq., 151, 456-473, 1999 preprint AMSPPJ0128-34-003 (1998). | MR 1669697 | Zbl 0921.34030
- ,[7] Conformally flat Riemannian metrics, Schrödinger operators and semiclassical approximation, J. Diff. Eq., 66, 2 (1987), 165-188. | MR 871993 | Zbl 0616.34020
- ,[8] A Course in Mathematical Analysis, Vol. II, Part 2, Differential Equations, New York, 1959. | Zbl 0144.04501
,[9] | MR 171038 | Zbl 0125.32102
, Ordinary Differential Equations, Wiley, New York, 1964.[10] | MR 950172 | Zbl 0651.46037
- , Weighted Fuctional Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988.[11] Sur une méthode nouvelle pour résoudre plusiers problèmes sur le développement d'une fonction arbitraire en séries infinies, Comptes Rendus, Paris, 144 (1907), 1329-1332. | JFM 38.0437.02
,