We compute the quasiconvex envelope of certain functions defined on the space of real matrices. These functions are basically functions of a quadratic form on . The quasiconvex envelope computation is applied to densities that are related to the James-Ericksen elastic stored energy function.
In questo lavoro calcoliamo la chiusura quasi convessa di alcune funzioni definite sullo spazio delle matrici reali attraverso forme quadratiche. I risultati sono applicati ad alcune funzioni relative alla densità di energia elastica di James e Ericksen.
@article{BUMI_2002_8_5B_2_469_0, author = {M. Bousselsal and H. Le Dret}, title = {Remarks on the quasiconvex envelope of some functions depending on quadratic forms}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {469-486}, zbl = {1177.49009}, mrnumber = {1911201}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_2_469_0} }
Bousselsal, M.; Le Dret, H. Remarks on the quasiconvex envelope of some functions depending on quadratic forms. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 469-486. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_2_469_0/
[1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 64 (1977), 337-403. | MR 475169 | Zbl 0368.73040
,[2] Relaxation of some multi-well problems, to appear, 1998. | MR 1830413 | Zbl 0977.74029
- ,[3] Rank-one-convex and quasiconvex envelopes for functions depending on quadratic forms, J. Convex Anal., 4 (1997), 305-319. | MR 1613479 | Zbl 0903.49011
- ,[4] Numerical modeling of the microstructure of crystals with symmetry-related variants, in Proceedings of the ARO US-Japan Workshop on Smart/Intelligent Materials and Systems, Honolulu, Hawaii, Technomic Publishing Company, Lancaster, PA, 1990.
- ,[5] 78, Springer-Verlag, Berlin, 1989. | MR 990890 | Zbl 0703.49001
, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, no.[6] Explicit relaxation of a variational problem in optimal design, Bull. A.M.S., 9 (1983), 211-214. | MR 707959 | Zbl 0527.49002
- ,[7] Optimal design and relaxation of variational problems, I, II and III, Comm. Pure Appl. Math., 39 (1986), 113-137, 139-182 and 353-377. | MR 820342 | Zbl 0621.49008
- ,[8] The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function, Proc. Roy. Soc. Edinburgh A, 125 (1995), 1179-1192. | MR 1362998 | Zbl 0843.73016
- ,[9] Quasiconvex envelopes of stored energy densities that are convex with respect to the strain tensor, in Calculus of Variations, Applications and Computations, Pont-a-Mousson 1994 ( , , , , eds.), 138-146, Pitman Research Notes in Mathematics, Longman, 1995. | MR 1419340 | Zbl 0830.73012
- ,[10] Quasiconvexity and the semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), 25-53. | MR 54865 | Zbl 0046.10803
,[11] | MR 202511 | Zbl 0142.38701
, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966.[12] Rank-one-convexity does not imply quasiconvexity, Proc. Royal Soc. Edinburgh A, 120 (1992), 185-189. | MR 1149994 | Zbl 0777.49015
,