Approximate smoothings of locally Lipschitz functionals
Ćwiszewski, Aleksander ; Kryszewski, Wojciech
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 289-320 / Harvested from Biblioteca Digitale Italiana di Matematica

The paper deals with approximation of locally Lipschitz functionals. A concept of approximation, based on the idea of graph approximation of the generalized gradient, is discussed and the existence of such approximations for locally Lipschitz functionals, defined on open domains in RN, is proved. Subsequently, the procedure of a smooth normal approximation of the class of regular sets (containing e.g. convex and/or epi-Lipschitz sets) is presented.

L'articolo tratta il problema dell'approssimazione di funzionali localmente Lipschitziani. Viene proposto un concetto di approssimazione che si basa sull'idea dell'approssimazione in grafico del gradiente generalizzato. Si prova l'esistenza di tali approssimazioni per funzionali localmente Lipschitziani definiti in domini aperti di RN. Infine, si presenta un procedimento di approssimazione normale regolare di insiemi regolari (introdotti in [13]).

Publié le : 2002-06-01
@article{BUMI_2002_8_5B_2_289_0,
     author = {Aleksander \'Cwiszewski and Wojciech Kryszewski},
     title = {Approximate smoothings of locally Lipschitz functionals},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {289-320},
     zbl = {1177.49028},
     mrnumber = {1911193},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_2_289_0}
}
Ćwiszewski, Aleksander; Kryszewski, Wojciech. Approximate smoothings of locally Lipschitz functionals. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 289-320. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_2_289_0/

[1] Aubin, J.-P., Optima and equilibria, Springer-Verlag, Berlin, Heidelberg1993. | MR 1217485 | Zbl 0781.90012

[2] Aubin, J.-P.-Ekeland, I., Applied Nonlinear Analysis, Wiley, New York1986. | MR 749753 | Zbl 0641.47066

[3] Aubin, J.-P.-Frankowska, H., Set-valued Analysis, Birkhäuser, Boston1991. | MR 1048347 | Zbl 0713.49021

[4] Bader, R.-Kryszewski, W., On the solution sets of differential inclusions and the periodic problem, Set-valued an9, no. 3 (2001), 289-313. | MR 1863363 | Zbl 0991.34011

[5] Benoist, J., Approximation and regularization of arbitrary sets in finite dimension, Set Valued Anal., 2 (1994), 95-115. | MR 1285823 | Zbl 0803.49017

[6] Boniseau, J.-M.-Cornet, B., Fixed point theorem and Morse's lemma for Lipschitzian functions, J. Math. Anal. Appl., 146 (1990), 318-322. | MR 1043103 | Zbl 0721.47039

[7] Borwein, J. M.-Zhu, Q. J., Multifunctional and functional analytic techniques in nonsmooth analysis, in Nonlinear Analysis, Differential Equations and Control (F. H. Clarke and R. J. Stern, eds.), Kluwer Acad. Publ. (1999), 61-157. | MR 1695006 | Zbl 0983.49011

[8] Cellina, A., Approximation of set-valued functions and fixed point theorems, Ann. Mat. Pura Appl., 82 (1969), 17-24. | MR 263046 | Zbl 0187.07701

[9] Clarke, F. H., Optimization and Nonsmooth Analysis, Wiley, New York1983. | MR 709590 | Zbl 0582.49001

[10] Clarke, F. H.-Ledyaev, Yu. S.-Stern, R. J., Complements, approximations, smoothings and invariance properties, J. Convex Anal., 4 (1997), 189-219. | MR 1613455 | Zbl 0905.49010

[11] Cornet, B.-Czarnecki, M.-O., Représentations lisses de sous-ensemble épi-lipschitziens de Rn, C. R. Acad. Paris Sèr. I, 325 (1997), 475-480. | MR 1692310 | Zbl 0893.49012

[12] Cornet, B.-Czarnecki, M.-O., Smooth normal approximations of epi-Lipschitzian subsets of RN, to appear in SIAM J. Control Opt. | MR 1675157 | Zbl 0945.49014

[13] Ćwiszewski, A.-Kryszewski, W., Equilibria of Set-Valued Maps: a variational approach, Nonlinear Anal., 48 (2002), 707-746. | MR 1868111 | Zbl 1030.49021

[14] Ćwiszewski, A.-Kryszewski, W., Partial differential equations with discontinuous nonlinearities – approximation approach, in preparation.

[15] Edwards, R. E., Functional analysis, Theory and applications, Holt, Rinehart and Winston, New York1965. | MR 221256 | Zbl 0182.16101

[16] Evans, L. C., Partial differential equations, Graduate Studies in Math., Vol. 19, American Math. Soc.1998. | Zbl 0902.35002

[17] Górniewicz, L., Topological approach to differential inclusions, Topological Methods in Differential Equations and Inclusions, (eds. A. Granas, M. Frigon), NATO ASI Series, Kluwer Acad. Publ.1995, 129-190. | MR 1368672 | Zbl 0834.34022

[18] Hartman, H., Ordinary differential equations, Birkhäuser, Boston1982. | MR 658490 | Zbl 0476.34002

[19] Kryszewski, W., Graph-approximation of set-valued maps on noncompact domains, Topology and Appl., 83 (1998), 1-21. | MR 1601626 | Zbl 0933.54023

[20] Kryszewski, W., Graph approximation of set-valued maps. A survey, Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis 2, J. P. Schauder Center for Nonlinear Studies Publ., Toruń1998, 223-235. | Zbl 1086.54500

[21] Kryszewski, W., Homotopy properties of set-valued mappings, The Nicholas Copernicus University, Toruń1997.

[22] Narasimhan, R., Analysis on Complex Manifolds, Masson & Cie (Paris), North Holland, Amsterdam 1968. | Zbl 0188.25803

[23] Plaskacz, S., Periodic solutions of differential inclusions on compact subsets of Rn, J. Math. Anal. Appl., 148 (1990), 202-212. | MR 1052055 | Zbl 0705.34040

[24] Rockafellar, R. T., Clarke's tangent cones and boundaries of closed sets in Rn, Nonlinear Anal., 3 (1979), 145-154. | MR 520481 | Zbl 0443.26010

[25] Schwartz, J., Nonlinear functional analysis, Gordon & Breach, New York1969. | Zbl 0203.14501

[26] Warga, J., Derivate containers, inverse functions, and controllability, in Calculus of Variations and Control Theory, D. L. Russell, ed., Academic Press, New York1976, 13-46. | MR 427561 | Zbl 0355.26004

[27] Warga, J., Optimal Control of Differential and Functional Equations; Chap. XI (Russian Translation) Nauka, Moscow1978. | Zbl 0253.49001

[28] Warga, J., Fat homeomorphisms and unbounded derivare containers, J. Math. Anal. Appl., 81 (1981), 545-560. | MR 622836 | Zbl 0476.26006

[29] Willem, M., Minimax Theorems, Birkhäuser, Boston1996. | MR 1400007 | Zbl 0856.49001

[30] Whitney, H., Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89. | MR 1501735 | Zbl 0008.24902