Some relations on the lattice of varieties of completely regular semigroups
Petrich, Mario
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 265-278 / Harvested from Biblioteca Digitale Italiana di Matematica

On the lattice LCR of varieties of completely regular semigroups considered as algebras with the binary multiplication and unary inversion within maximal subgroups, we study the relations Kl, K, Kr, Tl, T, Tr, C and L. Here K is the kernel relation, T is the trace relation, Tl and Tr are the left and the right trace relations, respectively, Kp=KTp for pl,r, C is the core relation and L is the local relation. We give an alternative definition for each of these relations P of the form UPVUP~=VP~(U,VL(CR)), for some subclasses P~ of CR. We also characterize the intersections of these relations and some joins within the lattice of equivalence relations on LCR.

Nel reticolo LCR delle varietà dei semigruppi completamente regolari, considerati come algebre con la moltiplicazione binaria e l'inversione unaria tra i sottogruppi massimali, si studiano le relazioni Kl, K, Kr, Tl, T, Tr, C e L. Qui K denota la relazione nucleo, T la relazione traccia, Tl e Tr le relazioni traccia sinistra e destra rispettivamente, Kp=KTp per pl,r, C la relazione core ed L la relazione locale. Viene data una definizione alternativa per ciascuna di queste relazioni P nella forma UPVUP~=VP~(U,VL(CR)), per alcune sottoclassi P~ di CR. Si caratterizzano inoltre le intersezioni di queste relazioni ed alcuni dei loro join nel reticolo delle equivalenze su LCR.

Publié le : 2002-06-01
@article{BUMI_2002_8_5B_2_265_0,
     author = {Mario Petrich},
     title = {Some relations on the lattice of varieties of completely regular semigroups},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {265-278},
     zbl = {1072.20067},
     mrnumber = {1911191},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_2_265_0}
}
Petrich, Mario. Some relations on the lattice of varieties of completely regular semigroups. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 265-278. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_2_265_0/

[1] Auinger, K., Complete congruences on lattices of (existence) varieties, Semigroups and Languages, Porto Conf. 1994, World Scientific (1996), 1-10. | MR 1477717 | Zbl 0917.20044

[2] Jones, P. R., Mal'cev product of varieties of completely regular semigroups, J. Austral. Math. Soc., 42 (1987), 227-246. | MR 869748 | Zbl 0613.20038

[3] Pastijn, F., The lattice of completely regular varieties, J. Austral. Math. Soc., 49 (1990), 24-42. | MR 1054080 | Zbl 0706.20042

[4] Pastijn, F.-Petrich, M., Congruences on regular semigroups, Trans. Amer. Math. Soc., 295 (1986), 607-633. | MR 833699 | Zbl 0599.20095

[5] Petrich, M., Semigroups certain of whose subsemigroups have identities, Czechoslovak J. Math., 16 (1966), 186-198. | MR 200370 | Zbl 0143.03203

[6] Petrich, M., The Green relations approach to congruences on completely regular semigroups, Ann. Mat. Pura Appl. (iv), 167 (1994), 117-146. | MR 1313553 | Zbl 0819.20066

[7] Petrich, M.-Reilly, N. R., Semigroups generated by certain operators on varieties of completely regular semigroups, Pacific J. Math., 132 (1988), 151-175. | MR 929587 | Zbl 0598.20061

[8] Petrich, M.-Reilly, N. R., Operators related to E-disjunctive and fundamental completely regular semigroups, J. Algebra, 134 (1990), 1-27. | MR 1068411 | Zbl 0706.20043

[9] Petrich, M.-Reilly, N. R., Operators related to idempotent generated and monoid completely regular semigroups, J. Austral. Math. Soc., 49 (1990), 1-23. | MR 1054079 | Zbl 0708.20019

[10] Reilly, N. R., Varieties of completely regular semigroups, J. Austral. Math. Soc., 38 (1985), 372-393. | MR 779201 | Zbl 0572.20040

[11] Reilly, N. R.-Zhang, S., Commutativity of operators on the lattice of existence varieties, Monatsh. Math., 123 (1997), 337-364. | MR 1448576 | Zbl 0870.20042