We prove the partial -regolarity up to the free boundary of the -harmonic maps which minimize the -energy .
Dimostriamo la -regolarità parziale fino alla frontiera libera delle mappe -armoniche che minimizzano la -energia .
@article{BUMI_2002_8_5B_1_79_0, author = {Thomas M\"uller}, title = {$C^{1,\beta}$-partial regularity of $p$-harmonic maps at the free boundary}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {79-107}, zbl = {1177.49010}, mrnumber = {1881445}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_1_79_0} }
Müller, Thomas. $C^{1,\beta}$-partial regularity of $p$-harmonic maps at the free boundary. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 79-107. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_1_79_0/
[1] | Zbl 0753.46001
, Lineare Funktionalanalysis, Springer, second edition 1992.[2] Minimizing -harmonic maps at a free boundary, Boll. Unione Mat. Ital. Sez. B Artci. Ric. Mat. (8), 1 (1998), 391-406. | MR 1638151 | Zbl 0922.58014
- ,[3] Partial regularity for minimisers of certain functionals having nonquadratic growth, Ann. Mat. Pura Appl. (4), 155 (1989), 1-24. | MR 1042826 | Zbl 0698.49001
- ,[4] 105, Princeton University Press, 1983. | MR 717034 | Zbl 0516.49003
, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies,[5] Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math., 57 (1986), 55-99. | MR 866406 | Zbl 0607.49003
- ,[6] 224, Springer, second edition 1998. | Zbl 0562.35001
- , Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften[7] Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew. Math., 431 (1992), 7-64. | MR 1179331 | Zbl 0776.35006
,[8] Regularity for a class of nonlinear elliptic systems, Acta Math., 138 (1977), 219-240. | MR 474389 | Zbl 0372.35030
,