C1,β-partial regularity of p-harmonic maps at the free boundary
Müller, Thomas
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 79-107 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove the partial C1,β-regolarity up to the free boundary of the p-harmonic maps which minimize the p-energy Dupdx.

Dimostriamo la C1,β-regolarità parziale fino alla frontiera libera delle mappe p-armoniche che minimizzano la p-energia Dupdx.

Publié le : 2002-02-01
@article{BUMI_2002_8_5B_1_79_0,
     author = {Thomas M\"uller},
     title = {$C^{1,\beta}$-partial regularity of $p$-harmonic maps at the free boundary},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {79-107},
     zbl = {1177.49010},
     mrnumber = {1881445},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_1_79_0}
}
Müller, Thomas. $C^{1,\beta}$-partial regularity of $p$-harmonic maps at the free boundary. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 79-107. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_1_79_0/

[1] Alt, H. W., Lineare Funktionalanalysis, Springer, second edition 1992. | Zbl 0753.46001

[2] Duzaar, F.-Gastel, A., Minimizing p-harmonic maps at a free boundary, Boll. Unione Mat. Ital. Sez. B Artci. Ric. Mat. (8), 1 (1998), 391-406. | MR 1638151 | Zbl 0922.58014

[3] Fusco, N.-Hutchinson, J., Partial regularity for minimisers of certain functionals having nonquadratic growth, Ann. Mat. Pura Appl. (4), 155 (1989), 1-24. | MR 1042826 | Zbl 0698.49001

[4] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, 105, Princeton University Press, 1983. | MR 717034 | Zbl 0516.49003

[5] Giaquinta, M.-Modica, G., Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math., 57 (1986), 55-99. | MR 866406 | Zbl 0607.49003

[6] Gilbarg, D.-Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften224, Springer, second edition 1998. | Zbl 0562.35001

[7] Hamburger, C., Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew. Math., 431 (1992), 7-64. | MR 1179331 | Zbl 0776.35006

[8] Uhlenbeck, K., Regularity for a class of nonlinear elliptic systems, Acta Math., 138 (1977), 219-240. | MR 474389 | Zbl 0372.35030