On the nonhamiltonian character of shocks in 2-D pressureless gas
Rykov, Yu. G.
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 55-78 / Harvested from Biblioteca Digitale Italiana di Matematica

The paper deals with the 2-D system of gas dynamics without pressure which was introduced in 1970 by Ua. Zeldovich to describe the formation of largescale structure of the Universe. Such system occurs to be an intermediate object between the systems of ordinary differential equations and hyperbolic systems of PDE. The main its feature is the arising of singularities: discontinuities for velocity and d-functions of various types for density. The rigorous notion of generalized solutions in terms of Radon measures is introduced and the generalization of Rankine-Hugoniot conditions is obtained. On the basis of such conditions it is shown that the variational representation for the generalized solutions, which is valid for 1-D case, in 2-D case generally speaking does not take place. A nontrivial 1-D system of nonstrictly hyperbolic type is also obtained to describe the evolution inside the shock.

Si considera un sistema bidimensionale della dinamica dei gas introdotto nel 1970 da Ya. Zeldovich per descrivere la formazione della struttura di grande scala dell'universo. Il sistema si rivela come qualcosa di intermedio tra un sistema di equazioni differenziali ordinarie e un sistema iperbolico di equazioni alle derivate parziali. La caratteristica principale è la nascita di singolarità: discontinuità della velocità e funzioni delta di vario tipo per la densità. Si dà una descrizione rigorosa delle soluzioni generalizzate in termini di misure di Radon e si ottiene una generalizzazione delle condizione di Rankine-Hugoniot. Sulla base di tali condizioni si mostra che la rappresentazione variazionale delle soluzioni generalizzate, valida nel caso unidimensionale, non vale in generale nel caso bidimensionale. Si ottiene anche un sistema unidimensionale non banale non strettamente iperbolico per la descrizione dell'evoluzione all'interno dell'urto.

Publié le : 2002-02-01
@article{BUMI_2002_8_5B_1_55_0,
     author = {Yu. G. Rykov},
     title = {On the nonhamiltonian character of shocks in 2-D pressureless gas},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {55-78},
     zbl = {1096.35117},
     mrnumber = {1881444},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_1_55_0}
}
Rykov, Yu. G. On the nonhamiltonian character of shocks in 2-D pressureless gas. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 55-78. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_1_55_0/

[1] Biagioni, H. A., A nonlinear theory of generalized functions, Lect. Notes in Math., 1421, Springer Verlag (1990). | MR 1049623 | Zbl 0694.46032

[2] Bouchut, F., On zero-pressure gas dynamics. Advances in Kinetic Theory and Computing, series on Advances in Mathematics and Applied Sciences, World Scientific, 22 (1994), 171-190. | MR 1323183 | Zbl 0863.76068

[3] Bouchut, F.-James, F., Solutions en dualité pour les gaz sans pression, C. R. Acad. Sci. Paris, Série I, 326 (1998), 1073-1078. | MR 1647170 | Zbl 0911.35092

[4] Bouchut, F.-James, F., Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, to appear in Comm. Part. Diff. Eq. | MR 1720754 | Zbl 0937.35098

[5] Colombeau, J. F., Elementary introduction to new generalized functions, North-Holland Math. Studies, 113 (1985). | MR 808961 | Zbl 0584.46024

[6] Colombeau, J. F., Multiplication of distributions, Bull. Amer. Math. Soc., 23, No. 2 (1990), 251-268. | MR 1028141 | Zbl 0731.46023

[7] Diperna, R. J., Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc., 292, No. 2 (1985), 383-420. | MR 808729 | Zbl 0606.35052

[8] Diperna, R. J.-Majda, A. J., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., 108 (1987), 667-689. | MR 877643 | Zbl 0626.35059

[9] E, W.-Rykov, Yu. G.-Sinai, Ya. G., The Lax-Oleinik variational principle for some 1-D systems of quasilinear equations, Uspehi matem. nauk, 50, vyp. 1 (1995), 193-194. | MR 1331362 | Zbl 0848.35073

[10] E, W.-Rykov, Yu. G.-Sinai, Ya. G., Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380. | MR 1384139 | Zbl 0852.35097

[11] Grenier, E., Existence globale pour le système des gas sans pression, C. R. Acad. Sci. Paris, 321, Série I (1995), 171-174. | MR 1345441 | Zbl 0837.35088

[12] Gurbatov, S. N.-Malakhov, A. N.-Saichev, A. I., Nonlinear random waves and turbulence in nondispersive media: waves, rays and particles, Manchester: Manchester University press (1991). | MR 1255826 | Zbl 0860.76002

[13] Hopf, E., The partial differential equation ut+uux=μuxx, Comm. Pure Appl. Math., 3, No. 3 (1950), 201-230. | MR 47234 | Zbl 0039.10403

[14] Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math., 7, No. 1 (1954), 159-193. | MR 66040 | Zbl 0055.19404

[15] Lax, P. D., Hyperbolic systems of conservation laws, Comm. Pure Appl. Math., 10, No. 4 (1957), 537-566. | MR 93653 | Zbl 0081.08803

[16] Majda, A., Compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sci., 53 (1984). | MR 748308 | Zbl 0537.76001

[17] Oleinik, O. A., Cauchy problem for nonlinear first-order quasilinear equations with discontinuous initial data, Trudy Mosk. Matem. Ob-va, 5 (1956), 433-454. | MR 85426

[18] Rykov, Yu. G., The variational principle for the 2-D system of gas dynamics without pressure, Uspehi Matem. nauk, 51, vyp. 1 (1996), 165-166 (in Russian). | MR 1392687 | Zbl 0874.76075

[19] Rykov, Yu. G., The singularities of type of shock waves in pressureless medium, the solutions in the sense of measures and Colombeau's sense, KIAM Preprint, No. 30 (1998) (in Russian).

[20] Rykov, Yu. G., The propagation of shock waves in 2-D system of pressureless gas dynamics. Hyperbolic Problems: Theory, Numerics, Applications, Seventh International Conference in Zürich, February 1998, ISNM, 30, 813-822. | MR 1717253 | Zbl 0928.35127

[21] Shandarin, S. F.-Zeldovich, Ya. B., The large-scale structure of the Universe: Turbulence, intermittency, structures in a self-gravitating medium, Reviews of Modern Phys., 61, No. 2 (1989), 185-220. | MR 989562 | Zbl 0542.76058

[22] She, Z. S.-Aurell, E.-Frisch, U., The inviscid Burgers equation with initial data of Brownian type, Commun. Math. Phys., 148 (1992), 623-641. | MR 1181072 | Zbl 0755.60104

[23] Vergassola, M.-Dubrulle, B.-Frisch, U.-Noullez, A., Burgers' equation, devil's staircases and the mass distribution function for large-scale structures, Astron. Astrophys., 289 (1994), 325-356.

[24] Zeldovich, Ya. B., Gravitational instability: An approximate theory for large density perturbations, Astron. Astrophys., 5 (1970), 84-89.

[25] Zhang, T.-Zheng, Y. X., Conjecture on structure of solutions of Riemann problem for 2-D gas dynamic systems, SIAM J. Math. Anal., 21, No. 3 (1990), 593-630. | MR 1046791 | Zbl 0726.35081