We prove that are primitive the finite groups whose normalizers of the Sylow subgroups are primitive. We classify the groups of such class, denoted by , and we study the Schunck classes whose boundary is contained in . We give also necessary and sufficient conditions in order that the projectors be subnormally embedded.
Si prova che sono primitivi i gruppi finiti nei quali siano primitivi i normalizzanti dei sottogruppi di Sylow. Si classificano i gruppi di tale classe, denotata con , e si studiano le classi di Schunck il cui bordo sia contenuto in , fornendo, tra l'altro, condizioni necessarie e sufficienti affinchè i proiettori siano subnormalmente immersi.
@article{BUMI_2002_8_5B_1_235_0, author = {A. D'Aniello and C. De Vivo and G. Giordano}, title = {Finite groups with primitive Sylow normalizers}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {235-245}, zbl = {1072.20026}, mrnumber = {1881934}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_1_235_0} }
D'Aniello, A.; De Vivo, C.; Giordano, G. Finite groups with primitive Sylow normalizers. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 235-245. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_1_235_0/
[1] Characterizations of Schunck classes of finite soluble groups, J. Algebra, 202 (1998), 243-249. | MR 1614210 | Zbl 0914.20018
,[2] On normalizers of Sylow subgroups in finite groups, Sib. Math. Journal, to appear. | MR 1686994 | Zbl 0941.20015
- ,[3] On finite groups with nilpotent Sylow normalizers, Arch. Math., 47 (1986), 193-197. | MR 861865 | Zbl 0605.20017
- - ,[4] Über normale Schunck und Fittingklassen, Math. Z., 118 (1970), 1-8. | MR 277611 | Zbl 0208.03301
- ,[5] Bounds on the Fitting length of finite soluble groups with supersoluble Sylow normalizers, Bull. Austral. Math. Soc., 44 (1991), 19-31. | MR 1120390 | Zbl 0719.20009
- - ,[6] | MR 1169099 | Zbl 0753.20001
- , Finite soluble groups, W. de Gruyter, Berlin (1992).[7] Finite soluble groups with supersoluble Sylow normalizers, Arch. Math., 50 (1988), 11-18. | MR 925488 | Zbl 0638.20013
- ,[8] Projektive Klassen endlicher Gruppen I, Schunck und Gaschützklassen, Math. Z., 186 (1984), 248-278. | MR 741300 | Zbl 0544.20015
,[9] Prime-power factor groups of finite groups II, Math. Z., 117 (1970), 46-56. | MR 294483 | Zbl 0192.35501
,[10] | MR 231903 | Zbl 0185.05701
, Finite Groups, Harper and Row, New York (1968). , Endliche Gruppen I, Springer-Verlag, Berlin (1969). - , Finite groups II, Springer-Verlag, Berlin (1982).