The prime graph of a finite group is defined as follows: the set of vertices is , the set of primes dividing the order of , and two vertices , are joined by an edge (we write ) if and only if there exists an element in of order . We study the groups such that the prime graph is a tree, proving that, in this case, .
Il «prime graph» di un gruppo finito è definito nel modo seguente: l'insieme dei vertici è , cioè l'insieme dei primi che dividono l'ordine del gruppo e due vertici , costituiscono un lato (e si indica ) se esiste un elemento in di ordine . Si studiano i gruppi tali che il grafo è un albero, dimostrando che, in questo caso, .
@article{BUMI_2002_8_5B_1_131_0, author = {Maria Silvia Lucido}, title = {Groups in which the prime graph is a tree}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {131-148}, zbl = {1097.20022}, mrnumber = {1881928}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_1_131_0} }
Lucido, Maria Silvia. Groups in which the prime graph is a tree. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 131-148. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_1_131_0/
[1] | MR 827219 | Zbl 0568.20001
- - - - , Atlas of finite Groups, Clarendon Press, Oxford (1985).[2] Über di Zerlegungszahlen der Suzukigruppen , Journal of Algebra, 59 (1979), 421-433. | MR 543261 | Zbl 0413.20008
,[3] The structure of linear groups, New York (1971). | Zbl 0232.20079
,[4] 163 (1996). | MR 1409812 | Zbl 0951.20001
- , Permutation Groups, Springer, Graduate Texts in Mathematics n.[5] | MR 347959 | Zbl 0227.20002
, Group representation Theory, Part A, Dekker, New York (1971).[6] Finite -semiregular groups, Journal of Algebra, 188 (1997), 547-579. | MR 1435374 | Zbl 0896.20007
- - ,[7] Decomposition of the augmentation ideal and relation modules of a finite group, Proc. London Math. Soc., 31 (1975), 149-166. | MR 374247 | Zbl 0313.20004
- ,[8] Prime graph components of finite simple groups, Mat. Sb., 180 n. 6 (1989), 787-797 (translated in Math. of the USSR, 67 (1990), 235-247). | MR 1015040 | Zbl 0698.20009
,[9] Prime graph components of the simple groups of Lie type over the field of even characteristic, Journal of Algebra, 155 (1993), 335-343. | MR 1212233 | Zbl 0799.20016
- ,[10] Prime graph components of finite almost simple groups, Rendiconti del Seminario Matematico dell'Università di Padova, 102 (1999), 1-22. | MR 1739529 | Zbl 0941.20008
,[11] The diameter of the prime graph of finite groups, Journal of Group Theory, 2 (1999), 157-172. | MR 1681526 | Zbl 0921.20020
,[12] The set of orders elements in a finite group, Algebra and Logic, vol. 33, n. 1 (1994), 49-55. | MR 1287011 | Zbl 0823.20024
,[13] Permutation groups, W. A. Benjamin, New York (1968). | MR 237627 | Zbl 0179.04405
,[14] | Zbl 0483.20001
, A course on the theory of groups, Springer-Verlag, Berlin Heidelberg - New York (1982).[15] Prime graph components of finite groups, Journal of Algebra, 69 (1981), 487-513. | MR 617092 | Zbl 0471.20013
,