Groups in which the prime graph is a tree
Lucido, Maria Silvia
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 131-148 / Harvested from Biblioteca Digitale Italiana di Matematica

The prime graph ΓG of a finite group G is defined as follows: the set of vertices is πG, the set of primes dividing the order of G, and two vertices p, q are joined by an edge (we write pq) if and only if there exists an element in G of order pq. We study the groups G such that the prime graph ΓG is a tree, proving that, in this case, πG8.

Il «prime graph» ΓG di un gruppo finito G è definito nel modo seguente: l'insieme dei vertici è πG, cioè l'insieme dei primi che dividono l'ordine del gruppo e due vertici p, q costituiscono un lato (e si indica pq) se esiste un elemento in G di ordine pq. Si studiano i gruppi G tali che il grafo ΓG è un albero, dimostrando che, in questo caso, πG8.

Publié le : 2002-02-01
@article{BUMI_2002_8_5B_1_131_0,
     author = {Maria Silvia Lucido},
     title = {Groups in which the prime graph is a tree},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {131-148},
     zbl = {1097.20022},
     mrnumber = {1881928},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_1_131_0}
}
Lucido, Maria Silvia. Groups in which the prime graph is a tree. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 131-148. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_1_131_0/

[1] Conway, J.-Curtis, R.-Norton, S.-Parker, R.-Wilson, R., Atlas of finite Groups, Clarendon Press, Oxford (1985). | MR 827219 | Zbl 0568.20001

[2] Burkhardt, R., Über di Zerlegungszahlen der Suzukigruppen Szq, Journal of Algebra, 59 (1979), 421-433. | MR 543261 | Zbl 0413.20008

[3] Dixon, J. D., The structure of linear groups, New York (1971). | Zbl 0232.20079

[4] Dixon, J. D.-Mortimer, B., Permutation Groups, Springer, Graduate Texts in Mathematics n. 163 (1996). | MR 1409812 | Zbl 0951.20001

[5] Dornhoff, L., Group representation Theory, Part A, Dekker, New York (1971). | MR 347959 | Zbl 0227.20002

[6] Fleischmann, P.-Lempken, W.-Tiep, P. H., Finite p-semiregular groups, Journal of Algebra, 188 (1997), 547-579. | MR 1435374 | Zbl 0896.20007

[7] Gruenberg, K. W.-Roggenkamp, K. W., Decomposition of the augmentation ideal and relation modules of a finite group, Proc. London Math. Soc., 31 (1975), 149-166. | MR 374247 | Zbl 0313.20004

[8] Kondratév, A. S., Prime graph components of finite simple groups, Mat. Sb., 180 n. 6 (1989), 787-797 (translated in Math. of the USSR, 67 (1990), 235-247). | MR 1015040 | Zbl 0698.20009

[9] Iiyori, N.-Yamaki, H., Prime graph components of the simple groups of Lie type over the field of even characteristic, Journal of Algebra, 155 (1993), 335-343. | MR 1212233 | Zbl 0799.20016

[10] Lucido, M. S., Prime graph components of finite almost simple groups, Rendiconti del Seminario Matematico dell'Università di Padova, 102 (1999), 1-22. | MR 1739529 | Zbl 0941.20008

[11] Lucido, M. S., The diameter of the prime graph of finite groups, Journal of Group Theory, 2 (1999), 157-172. | MR 1681526 | Zbl 0921.20020

[12] Mazurov, V. D., The set of orders elements in a finite group, Algebra and Logic, vol. 33, n. 1 (1994), 49-55. | MR 1287011 | Zbl 0823.20024

[13] Passman, D. S., Permutation groups, W. A. Benjamin, New York (1968). | MR 237627 | Zbl 0179.04405

[14] Robinson, D. R., A course on the theory of groups, Springer-Verlag, Berlin Heidelberg - New York (1982). | Zbl 0483.20001

[15] Williams, J. S., Prime graph components of finite groups, Journal of Algebra, 69 (1981), 487-513. | MR 617092 | Zbl 0471.20013