On the range of elliptic operators discontinuous at one point
Giannotti, Cristina
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 123-129 / Harvested from Biblioteca Digitale Italiana di Matematica

Let L be a second order, uniformly elliptic, non variational operator with coefficients which are bounded and measurable in Rd (d3) and continuous in Rd0. Then, if ΩRd is a bounded domain, we prove that LW2,pΩ is dense in LpΩ for any p1,d/2.

Si considerano operatori uniformemente ellittici del secondo ordine in forma non variazionale, L, a coefficienti misurabili e limitati in Rd (d3) e continui in Rd0 e si prova il seguente risultato: se ΩRd è un dominio limitato, allora LW2,pΩ è denso in LpΩ per ogni p1,d/2.

Publié le : 2002-02-01
@article{BUMI_2002_8_5B_1_123_0,
     author = {Cristina Giannotti},
     title = {On the range of elliptic operators discontinuous at one point},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {123-129},
     zbl = {1178.47032},
     mrnumber = {1881447},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_1_123_0}
}
Giannotti, Cristina. On the range of elliptic operators discontinuous at one point. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 123-129. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_1_123_0/

[1] Arena, O., On the range of Ural'tseva's Axially symmetric Operator in Sobolev Spaces, Partial Differential Equations (P. Marcellini, G. Talenti, E. Vesentini Eds.) Dekker (1996). | Zbl 0867.35029

[2] Gilbarg, D.-Serrin, J., On isolated singularities of solutions of second order elliptic equations, J. Anal. Math., 4 (1955-56), 309-340. | MR 81416 | Zbl 0071.09701

[3] Gilbarg, D.-Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer (1983). | MR 737190 | Zbl 0562.35001

[4] Ladyzhenskaya, O. A.-Ural'Tseva, N. N., Linear and Quasilinear Elliptic Equations, A.P. (1968). | MR 244627 | Zbl 0164.13002

[5] Manselli, P., On the range of elliptic, second order, nonvariational operators in Sobolev spaces, Annali Mat. pura e appl., (IV), Vol. CLXXVIII (2000), 67-80. | MR 1849379 | Zbl 1096.47518

[6] Nečas, J., Les Méthodes Directes en Théorie des Équations Elliptiques, MassonParis1967. | MR 227584

[7] Pucci, C., Operatori ellittici estremanti, Annali di Matematica Pura ed Applicata (IV), Vol. LXXII (1966), 141-170. | MR 208150 | Zbl 0154.12402

[8] Ural'Tseva, N. N., Impossibility of W2,p bounds for multidimensional elliptic operators with discontinuous coefficients, L.O.M.I., 5 (1967), 250-254. | MR 226179 | Zbl 0186.43006