Let be a second order, uniformly elliptic, non variational operator with coefficients which are bounded and measurable in () and continuous in . Then, if is a bounded domain, we prove that is dense in for any .
Si considerano operatori uniformemente ellittici del secondo ordine in forma non variazionale, , a coefficienti misurabili e limitati in () e continui in e si prova il seguente risultato: se è un dominio limitato, allora è denso in per ogni .
@article{BUMI_2002_8_5B_1_123_0, author = {Cristina Giannotti}, title = {On the range of elliptic operators discontinuous at one point}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {123-129}, zbl = {1178.47032}, mrnumber = {1881447}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_1_123_0} }
Giannotti, Cristina. On the range of elliptic operators discontinuous at one point. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 123-129. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_1_123_0/
[1] On the range of Ural'tseva's Axially symmetric Operator in Sobolev Spaces, Partial Differential Equations ( , , Eds.) Dekker (1996). | Zbl 0867.35029
,[2] On isolated singularities of solutions of second order elliptic equations, J. Anal. Math., 4 (1955-56), 309-340. | MR 81416 | Zbl 0071.09701
- ,[3] | MR 737190 | Zbl 0562.35001
- , Elliptic Partial Differential Equations of Second Order, Springer (1983).[4] | MR 244627 | Zbl 0164.13002
- , Linear and Quasilinear Elliptic Equations, A.P. (1968).[5] On the range of elliptic, second order, nonvariational operators in Sobolev spaces, Annali Mat. pura e appl., (IV), Vol. CLXXVIII (2000), 67-80. | MR 1849379 | Zbl 1096.47518
,[6] | MR 227584
, Les Méthodes Directes en Théorie des Équations Elliptiques, MassonParis1967.[7] Operatori ellittici estremanti, Annali di Matematica Pura ed Applicata (IV), Vol. LXXII (1966), 141-170. | MR 208150 | Zbl 0154.12402
,[8] Impossibility of bounds for multidimensional elliptic operators with discontinuous coefficients, L.O.M.I., 5 (1967), 250-254. | MR 226179 | Zbl 0186.43006
,