We give a new metrization theorem on terms of a new structure introduced by the authors in [2] and called fractal structure. As a Corollary we obtain Nagata-Smirnovs and Uryshons metrization Theorems.
Presentiamo un nuovo teorema di metrizzazione, utilizzando una nuova struttura introdotta dagli autori in [2] detta struttura frattale. Come corollario otteniamo i teoremi di metrizzazione di Nagata-Smirnov e di Uryshon.
@article{BUMI_2002_8_5B_1_109_0, author = {F. G. Arenas and M. A. S\'anchez-Granero}, title = {A new metrization theorem}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {109-122}, zbl = {1072.54511}, mrnumber = {1881446}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5B_1_109_0} }
Arenas, F. G.; Sánchez-Granero, M. A. A new metrization theorem. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 109-122. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5B_1_109_0/
[1] Tilings in topological spaces, Int. Jour. of Maths. and Math. Sci., 22 (1999), 3, 611-616. | MR 1717184 | Zbl 0979.54014
,[2] A characterization of non-archimedeanly quasimetrizable spaces, Rend. Istit. Mat. Univ. Trieste Suppl., 30 (1999), 21-30. | Zbl 0944.54019
- ,[3] A new aproach to metrization, Topology and its. Appl., to appear. | Zbl 0996.54043
- ,[4] Hereditarily closure-preserving collections and metrizability, Proc.-Amer.-Math.-Soc., 51 (1975), 483-488. | MR 370519 | Zbl 0307.54030
- - ,[5] | MR 1039321 | Zbl 0684.54001
, General Topology, Heldermann Verlag, Berlin, 1989.[6] 77, Marcel Dekker, New York, 1982. | MR 660063 | Zbl 0501.54018
- , Quasi-Uniform Spaces, Lecture Notes Pure Appl. Math.,[7] Closed mappings and metric spaces, Proc. Japan Acad., 32 (1956), 10-14. | MR 87077 | Zbl 0073.17803
- ,[8] A condition for the metrizability of topological spaces and for -dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 5 (1955), 33-36. | MR 71754 | Zbl 0065.38101
,[9] | MR 1053191 | Zbl 0684.00017
- , Topics in general topology, North Holland, 1989.[10] Metrizability of decomposition spaces, Proc. Amer. Math. Soc., 7 (1956), 690-700. | MR 87078 | Zbl 0071.16001
,[11] -spaces and -metrizable spaces and CF family, Topology Appl., 82 (1998), 153-159. | MR 1602447 | Zbl 0888.54036
,