@article{BUMI_2002_8_5A_3_515_0, author = {Marino Gatto}, title = {Matematica ed Ecologia: un'interazione feconda}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {5-A}, year = {2002}, pages = {515-539}, zbl = {1194.00040}, mrnumber = {1947794}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5A_3_515_0} }
Gatto, Marino. Matematica ed Ecologia: un’interazione feconda. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 515-539. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5A_3_515_0/
[1]
, An Essay on the Principle of Population, London: Johnson, 1798.[2] Recherches mathematiques sur la loi d’accroissement de la population, Mem. Acad. Roy. Belg., 18 (1845), 1-38.
,[3] | JFM 51.0416.06
, Elements of Physical Biology, Baltimore: Williams and Wilkins, 1924.[4] Variazioni e fluttazioni del numero d’individui in specie animali conviventi, Mem. Accad. Lincei, 6 (1926), 31-113. | JFM 52.0450.06
,[5]
, The struggle for existence, Baltimore: Williams and Wilkins, 1934.[6]
- - , Ecology, Oxford: Blackwell Scientific Publications, 1990.[7]
- , On the Dvnamics of Exploited Fish Populations, London: H. M. Stationery Office, 1957.[8] 119, Ottawa: Bull. Fish. Res. Board Can., 1958.
, Handbook of Computations for Biological Statistics of Fish Populations, vol.[9] Economic theory of a common-property resource: the fishery, J. Pol. Econ., 62 (1954), 124-142.
,[10] | MR 2778605 | Zbl 0364.90002
, Mathematical Bioeconomics, New York: J. Wiley, 1976.[11] | Zbl 0102.32001
- - - , The mathematical theory of optimal processes, New York and London: Interscience, 1962.[12] A Catenary turnpike theorem involving consumption and the golden rule, American Economic Review, 55 (1965), 486-496.
,[13] Biological populations with non-overlapping generations: stable points, stable cycles and chaos, Science, 186 (1974), 645-647.
,[14] Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomogical Society of America, 15 (1969), 237-240.
,[15] | Zbl 0913.92025
- , Metapopulation Biology: Ecology, Genetics, and Evolution, San Diego: Academic Press, 1997.[16] Single-species metapopulation dynamics: a structured model, Theoretical Population Biology, 42 (1992), 35-61. | MR 1181879 | Zbl 0758.92011
- ,[17] Chaos reduces species extinction by amplifying local population noise, Nature, 364 (1993), 229-232.
- - ,[18] A mesoscale approach to extinction risk in fragmented habitats, Nature, 400 (1999), 560-562.
- , , Elements of Applied Bifurcation Theory, New York: Springer, 1995.