Matematica ed Ecologia: un’interazione feconda
Gatto, Marino
Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002), p. 515-539 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2002-12-01
@article{BUMI_2002_8_5A_3_515_0,
     author = {Marino Gatto},
     title = {Matematica ed Ecologia: un'interazione feconda},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {5-A},
     year = {2002},
     pages = {515-539},
     zbl = {1194.00040},
     mrnumber = {1947794},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2002_8_5A_3_515_0}
}
Gatto, Marino. Matematica ed Ecologia: un’interazione feconda. Bollettino dell'Unione Matematica Italiana, Tome 5-A (2002) pp. 515-539. http://gdmltest.u-ga.fr/item/BUMI_2002_8_5A_3_515_0/

[1] Malthus, T. R., An Essay on the Principle of Population, London: Johnson, 1798.

[2] Verhulst, P. F., Recherches mathematiques sur la loi d’accroissement de la population, Mem. Acad. Roy. Belg., 18 (1845), 1-38.

[3] Lotka, A. J., Elements of Physical Biology, Baltimore: Williams and Wilkins, 1924. | JFM 51.0416.06

[4] Volterra, V., Variazioni e fluttazioni del numero d’individui in specie animali conviventi, Mem. Accad. Lincei, 6 (1926), 31-113. | JFM 52.0450.06

[5] Gause, G. F., The struggle for existence, Baltimore: Williams and Wilkins, 1934.

[6] Begon, M. - Harper, J. L. - Townsend, C. R., Ecology, Oxford: Blackwell Scientific Publications, 1990.

[7] Beverton, R. J. H. - Holt, S. J., On the Dvnamics of Exploited Fish Populations, London: H. M. Stationery Office, 1957.

[8] Ricker, W. E., Handbook of Computations for Biological Statistics of Fish Populations, vol. 119, Ottawa: Bull. Fish. Res. Board Can., 1958.

[9] Gordon, H. S., Economic theory of a common-property resource: the fishery, J. Pol. Econ., 62 (1954), 124-142.

[10] Clark, C. W., Mathematical Bioeconomics, New York: J. Wiley, 1976. | MR 2778605 | Zbl 0364.90002

[11] Pontryagin, L. S. - Boltyanskii, V. - Gamkrelidze, R. - Mischenko, E., The mathematical theory of optimal processes, New York and London: Interscience, 1962. | Zbl 0102.32001

[12] Samuelson, P. A., A Catenary turnpike theorem involving consumption and the golden rule, American Economic Review, 55 (1965), 486-496.

[13] May, R. M., Biological populations with non-overlapping generations: stable points, stable cycles and chaos, Science, 186 (1974), 645-647.

[14] Levins, R., Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomogical Society of America, 15 (1969), 237-240.

[15] Hanski, I. - Gilpin, M., Metapopulation Biology: Ecology, Genetics, and Evolution, San Diego: Academic Press, 1997. | Zbl 0913.92025

[16] Gyllenberg, M. - Hanski, I., Single-species metapopulation dynamics: a structured model, Theoretical Population Biology, 42 (1992), 35-61. | MR 1181879 | Zbl 0758.92011

[17] Allen, J. C. - Schaffer, W. M. - Rosko, D., Chaos reduces species extinction by amplifying local population noise, Nature, 364 (1993), 229-232.

[18] Casagrandi, R. - Gatto, M., A mesoscale approach to extinction risk in fragmented habitats, Nature, 400 (1999), 560-562.

[19] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, New York: Springer, 1995. | MR 1344214 | Zbl 1082.37002