In questo lavoro studiamo l'esistenza di soluzioni deboli su un intervallo compatto di problemi con valore iniziale per inclusioni funzionali neutre differenziali e integrodifferenziali in spazi di Banach. I risultati sono ottenuti usando un teorema di punto fisso per mappe condensanti dovuto a Martelli.
@article{BUMI_2001_8_4B_3_767_0, author = {M. Benchohra and S. K. Ntouyas}, title = {Neutral functional differential and integrodifferential inclusions in Banach spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4-A}, year = {2001}, pages = {767-782}, zbl = {1177.34100}, mrnumber = {1859996}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_3_767_0} }
Benchohra, M.; Ntouyas, S. K. Neutral functional differential and integrodifferential inclusions in Banach spaces. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 767-782. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_3_767_0/
[1] | MR 591679 | Zbl 0441.47056
- , Measures of Noncompactness in Banach Spaces, Marcel-Dekker, New York, 1980.[2] | MR 1189795 | Zbl 0760.34002
, Multivalued Differential Equations, Walter de Gruyter, Berlin-New York, 1992.[3] Oscillation Theory for Functional Differential Equations, Pure and Applied Mathematics, 1994. | MR 1309905 | Zbl 0821.34067
- - ,[4] | MR 508721 | Zbl 0352.34001
, Theory of Functional Differential Equations, Springer, New York, 1977.[5] | MR 1375459
, Boundary Value Problems for Functional Differential Equations, World Scientific, 1995.[6] Existence results for partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl.221 (1998), 452-475. | MR 1621730 | Zbl 0915.35110
- ,[7] Existence of periodic solutions of partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 499-522. | MR 1621738 | Zbl 0926.35151
- ,[8] | MR 1485775 | Zbl 0887.47001
- , Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London, 1997.[9] An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786. | MR 196178 | Zbl 0151.10703
- ,[10] A Rothe's type theorem for non-compact acyclic-valued map, Boll. Un. Mat. Ital., 4 (1975), 70-76. | MR 394752 | Zbl 0314.47035
,[11] Global existence for neutral functional integrodifferential equations, Nonlinear Anal., 30 (1997), 2133-2142. | MR 1490335 | Zbl 0890.45004
,[12] Initial and boundary value problems for functional differential equations via the topological transversality method: A survey, Bull. Greek Math. Soc., 40 (1998), 3-41. | MR 1671786 | Zbl 0919.34059
,[13] Existence results for initial value problems for neutral functional differential equations, J. Differential Equations, 114 (1994), 527-537. | MR 1303038 | Zbl 0810.34061
- - ,[14] Boundary value problems for evolution inclusions, Comment. Math. Univ. Carol., 29 (1988), 355-363. | MR 957404 | Zbl 0696.35074
,[15] | MR 710486 | Zbl 0516.47023
, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.[16] | MR 617913
, Functional Analysis, 6th edn, Springer-Verlag, Berlin, 1980.