Sia un primo, e un gruppo abeliano elementare di ordine che agisce sul -gruppo localmente finito . Supponiamo che esista un intero positivo tale che per ogni . In questo articolo si dimostra che è nilpotente, con classe di nilpotenza limitata da una funzione che dipende solo da e .
@article{BUMI_2001_8_4B_3_731_0, author = {Pavel Shumyatsky}, title = {On locally finite groups and the centralizers of automorphisms}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4-A}, year = {2001}, pages = {731-736}, zbl = {1130.20308}, mrnumber = {1859432}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_3_731_0} }
Shumyatsky, Pavel. On locally finite groups and the centralizers of automorphisms. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 731-736. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_3_731_0/
[1] Some characterizations of nilpotent Lie algebras, Math. Z., 103 (1968), 40-42. | MR 223415 | Zbl 0178.03603
,[2] | MR 231903 | Zbl 0185.05701
, Finite groups, New York, Evanston, London: Harper and Row, 1968.[3] Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 2 (1958), 595-622. | MR 105441 | Zbl 0084.25602
,[4] | MR 470081 | Zbl 0259.20001
- , Locally finite groups, North Holland, Amsterdam, 1973.[5] On fixed points of automorphisms of Lie rings and locally finite groups, Algebra and Logic, 34 (1995), 395-405. | MR 1400710 | Zbl 0901.20026
- ,[6] Solvability of Lie algebras with a regular automorphism of finite period, Soviet Math. Dokl., 4 (1963), 683-685. | MR 157990 | Zbl 0134.03604
,[7] On periodic soluble groups and the fixed point groups of operators, Comm. Algebra, 20(10) (1992), 2815-2820. | MR 1179263 | Zbl 0795.20015
,[8] On periodic solvable groups having automorphisms with nilpotent fixed point groups, Israel Math. J., 87 (1994), 111-116. | MR 1286819 | Zbl 0815.20020
,[9] Automorphisms of finite groups and their fixed-point subgroups, J. Austral. Math. Soc., 9 (1969), 467-477. | MR 242940 | Zbl 0182.03901
,[10] On finite groups admitting automorphisms with nilpotent fixed-point group, Bull. Austral. Math. Soc., 5 (1971), 281-282. | MR 296163 | Zbl 0221.20030
,[11] On groups admitting a noncyclic abelian automorphism group, Bull. Austral. Math. Soc., 9 (1973), 363-366. | MR 376852 | Zbl 0273.20017
,