In questo articolo si riassumono le definizioni e le principali proprietà dei gruppi di ostruzione con decorazione di tipo LS e LP. Si stabiliscono nuove relazioni fra questi gruppi e si descrivono le proprietà delle mappe naturali fra differenti gruppi con decorazione. Si costruiscono varie successioni spettrali, contenenti questi gruppi con decorazione, e si studiano la loro connessione con le successioni spettrali in -teoria per certe estensioni quadratiche di antistrutture. Infine, si introduce il concetto di diagramma geometrico di gruppi e si calcolano esplicitamente i gruppi di ostruzione per un diagramma formato da 2-gruppi finiti.
@article{BUMI_2001_8_4B_3_647_0, author = {A. Cavicchioli and Y. V. Muranov and D. Repov\v s}, title = {Algebraic properties of decorated splitting obstruction groups}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4-A}, year = {2001}, pages = {647-675}, zbl = {1177.57027}, mrnumber = {1859427}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_3_647_0} }
Cavicchioli, A.; Muranov, Y. V.; Repovš, D. Algebraic properties of decorated splitting obstruction groups. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 647-675. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_3_647_0/
[1] Splitting homotopy equivalences along a one-sided submanifold of codimension 1, Izv. Akad. Nauk SSSR Ser. Mat., 51 (2) (1987), 211-241 (in Russian); English transl. in Math. USSR Izv., 30 (2) (1988), 185-215. | Zbl 0643.57016
,[2] Obstructions to the splitting of manifolds with infinite fundamental group, Mat. Zametki, 60 (2) (1996), 163-175 (in Russian); English transl. in, Math. Notes, 60 (1-2) (1996), 121-129. | Zbl 0905.57020
- ,[3] Fixed point free involutions on homotopy spheres, Bull. Amer. Math. Soc., 73 (1967), 242-245. | MR 206965 | Zbl 0156.21903
- ,[4] 18, Cambridge Univ. Press, Cambridge-New York-Melbourne, 1976. | MR 413113 | Zbl 0315.55002
- - , A Geometric Approach to Homology Theory, London Math. Soc. Lect. Note Ser.,[5] Pseudo-free actions. I., in Algebraic Topology (Aarhus, 1978), Lect. Notes in Math., 763, Springer-Verlag, Berlin, 1979, 395-447. | MR 561231 | Zbl 0416.57020
- ,[6] On 4-manifolds with free fundamental group, Forum Math., 6 (1994), 415-429. | MR 1277705 | Zbl 0822.57015
- ,[7] A note on four-manifolds with free fundamental groups, J. Math. Sci. Univ. Tokyo, 4 (1997), 435-451. | MR 1466355 | Zbl 0893.57016
- ,[8] On the stable classification of certain 4-manifolds, Bull. Austral. Math. Soc., 52 (1995), 385-398. | MR 1358695 | Zbl 0863.57014
- - ,[9] Four-manifolds with surface fundamental groups, Trans. Amer. Math. Soc., 349 (1997), 4007-4019. | MR 1376542 | Zbl 0887.57026
- - ,[10] Spectral sequences in -theory for a twisted quadratic extension, Yokohama Math. Journal, 46 (1998), 1-13. | MR 1670761 | Zbl 0958.19002
- - ,[11] Una introduzione geometrica alla L-teoria, to appear.
- - ,[12] 126 Amer. Math. Soc. Providence, R.I., 1992. | MR 1156497 | Zbl 0742.00073
- - (Eds.), Algebraic -Theory, Commutative Algebra, and Algebraic Geometry, Proceed. U.S.-Italy Joint Sem. (S. Margherita Ligure, June 18-24, 1989), Contemporary Math.,[13] 226, Cambridge Univ. Press, Cambridge, 1995. | MR 1388294 | Zbl 0829.00027
- - (Eds.), Novikov Conjectures, Index Theorems and Rigidity, Vol. 1, London Math. Soc. Lecture Notes,[14] | MR 1201584 | Zbl 0705.57001
- , Topology of 4-Manifolds, Princeton Univ. Press, Princeton, N. J., 1990.[15] 4-Manifold topology I: Subexponential groups, Invent. Math., 122 (1995), 509-529. | MR 1359602 | Zbl 0857.57017
- ,[16] Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk. SSSR Ser. Mat., 48 (5) (1984), 939-985 (in Russian); English transl. in Math. USSR Izvestiya, 25 (1985), 259-300. | Zbl 0583.20023
,[17] Projective surgery obstructions on closed manifolds, Algebraic -theory, Part II (Oberwolfach 1980), Lect. Notes Math.967, Springer-Verlag, Berlin (1982), 101-131. | MR 689390 | Zbl 0503.57018
,[18] A spectral sequence in surgery theory, Mat. Sb., 183 (9) (1992), 3-14 (in Russian); English transl. in, Russian Acad. Sci. Sb. Math., 77 (1994). | Zbl 0791.57022
- ,[19] On the computation of the projective surgery obstruction groups, K-theory, 7 (1993), 537-574. | MR 1268592 | Zbl 0797.57017
- ,[20] Projective splitting obstruction groups for onesided submanifolds, Mat. Sbornik, 190 (1999), to appear. | MR 1740157 | Zbl 0953.57017
- ,[21] Round -theory, J. Pure Appl. Algebra, 47 (1987), 131-154. | MR 906966 | Zbl 0638.18003
- - ,[22] An introduction to maps between surgery obstruction groups (1984), in Algebraic Topology (Aarhus, 1982), Lect. Notes in Math. 1051, Springer-Verlag, Berlin-New York (1984), pp. 49-127. | MR 764576 | Zbl 0556.57026
- - ,[23] Detection theorems in and -theory, J. Pure Appl. Algebra, 63 (1990), 247-299. | MR 1047584 | Zbl 0718.18006
- - ,[24] 198, Cambridge Univ. Press, Cambridge, 1994. | MR 1275829 | Zbl 0812.57001
, The Algebraic Characterization of Geometric 4-Manifolds, London Math. Soc. Lect. Note Ser.[25] The generalized Browder-Livesay invariant, Izv. Akad. Nauk. SSSR: Ser. Mat., 51 (2) (1987), 379-401 (in Russian); English transl. in: Math. USSR Izv., 30 (2) (1988), 353-374. | Zbl 0643.57017
,[26] | MR 298698 | Zbl 0214.22501
, Involutions on Manifolds, Springer-Verlag, Berlin-Heidelberg-New York, 1971.[27] 92, Princeton Univ. Press, Princeton, N. J., 1979. | MR 548575 | Zbl 0446.57002
- , The Classifying Spaces for Surgery and Cobordism of Manifolds, Ann. of Math. Studies[28] Obstruction groups to splitting and quadratic extensions of antistructures, Izvestiya RAN: Ser. Mat., 59 (6) (1995), 107-132 (in Russian); English transl. in Izvestiya Math., 59 (6) (1995), 1207-1232. | Zbl 0996.57518
,[29] Relative Wall groups and decorations, Mat. Sbornik, 185 (12) (1994), 79-100 (in Russian); English transl. in, Russian Acad. Sci. Sb. Math., 83 (2) (1995), 495-514. | Zbl 0861.57043
,[30] Obstructions to surgeries of two-sheeted coverings, Mat. Sbornik, 131 (3) (1986), 347-356 (in Russian); English transl. in: Math. USSR Sbornik, 59 (2) (1998), 339-348. | Zbl 0624.57029
,[31] Splitting problem, Trudy MIRAN, 212 (1996), 123-146 (in Russian); English transl. in Proc. Steklov Inst. Math., 212 (1996), 115-137. | Zbl 0888.57029
,[32] Projective splitting obstruction groups and geometric antistructures, Abstracts of International Conference Dedicated to 90th Anniversary of L. S. Pontryagin. Geometry and Topology, Moscow, 1998.
,[33] Browder-Livesay groups of abelian 2-groups, Matem. Sbornik, 181 (8) (1990), 1061-1098 (in Russian); English transl. in Math. USSR Sb., 70 (1991). | Zbl 0732.55003
- ,[34] Groups of obstructions to surgery and splitting for a manifold pair, Mat. Sb., 188 (3) (1997), 127-142 (in Russian); English transl. in Russian Acad. Sci. Sb. Math., 188 (3) (1997), 449-463. | Zbl 0881.57038
- ,[35] Obstructions to reconstructions from a pair of manifolds, Uspehi Mat. Nauk., 51 (4) (1996), 165-166 (in Russian); English transl. in Russian Math. Surveys, 51 (4) (1996), 743-744. | Zbl 0881.57039
- ,[36] Algebraic construction and properties of Hermitian analogs of -theory over rings with involution from the viewpoint of Hamiltonian formalism. Applications to differential topology and theory of characteristic classes, I, II, Izv. Akad. Nauk SSSR. Ser. Mat., 34 (1970), 253-288 and 475-500 (in Russian); English transl. in Math. USSR Izv., 4 (1970), 257-292 and 479-505. | Zbl 0233.57009
,[37] -theory and Chow groups on singular varieties, in Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory I, II (Boulder, Colorado, 1983), Contemporary Math., 55Amer. Math. Soc., Providence, R.I. (1986), 339-370. | MR 862641 | Zbl 0607.14002
- ,[38] 26, Princeton Univ. Press, Princeton, N. J., 1981. | MR 620795 | Zbl 0471.57012
, Exact Sequences in the Algebraic Theory of Surgery, Math. Notes[39] The -theory of twisted quadratic extensions, Canad. J. Math., 39 (1987), 345-364. | MR 899842 | Zbl 0635.57017
,[40] | MR 1211640 | Zbl 0767.57002
, Algebraic -theory and Topological Manifolds, Cambridge Tracts in Mathematics, Cambridge University Press, 1992.[41] | MR 1713074 | Zbl 0910.57001
, High-dimensional knot theory, Math. Monograph, Springer-Verlag, Berlin-Heidelberg-New York, 1998.[42] 212, Springer-Verlag, Berlin-Heidelberg-New York, 1975. | MR 385836 | Zbl 0305.55001
, Algebraic Topology-Homotopy and Homology, Grund. Math. Wiss.[43] | Zbl 0219.57024
, Surgery on Compact Manifolds, Academic Press, London - New York, 1970; Second Edition, , Editor, Amer. Math. Soc., Providence, R. I., 1999.[44] On the axiomatic foundations of the theory of Hermitian forms, Proc. Cambridge Phil. Soc., 67 (1970), 243-250. | MR 251054 | Zbl 0197.31103
,[45] Foundations of Algebraic -Theory, Proc. Conf. Battelle Memorial Inst. (Seattle, WA. 1972), Lect. Notes Math.343Springer-Verlag, Berlin, 1973. | MR 357550 | Zbl 0269.18010
,[46] Formulae for surgery obstructions, Topology, 25 (1976), 189-210. | MR 423378 | Zbl 0338.57016
,[47] Classification of Hermitian forms, VI. Group rings, Ann. of Math. (2), 103 (1976), 1-80. | MR 432737 | Zbl 0328.18006
,