The hyperKähler geometry associated to Wolf spaces
Kobak, Piotr ; Swann, Andrew
Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001), p. 587-595 / Harvested from Biblioteca Digitale Italiana di Matematica

Sia G un grupo di Lie compatto e semplice. Sia Omin la più piccola orbita nilpotente non-banale nell'algebra di Lie complessa gC. Si presenta una costruzione diretta di teoria di Lie delle metriche iperKahler su Omin con potenziale Kahleriano G-invariante e compatibili con la forma simplettica complessa di Kostant-Kirillov-Souriau. In particolare si ottengono le metriche iperKahler dei fibrati associati sugli spazi di Wolf (spazi simmetrici quaternionali a curvatura scalare positiva).

Publié le : 2001-10-01
@article{BUMI_2001_8_4B_3_587_0,
     author = {Piotr Kobak and Andrew Swann},
     title = {The hyperK\"ahler geometry associated to Wolf spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4-A},
     year = {2001},
     pages = {587-595},
     zbl = {1182.53041},
     mrnumber = {1859424},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_3_587_0}
}
Kobak, Piotr; Swann, Andrew. The hyperKähler geometry associated to Wolf spaces. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 587-595. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_3_587_0/

[1] Alekseevsky, D. V., Compact quaternion spaces, Funktsional. Anal. i Prilozhen., 2, no. 2 (1968), 11-20, English translation: Functional Anal. Appl., 2 (1968), 106-114. | MR 231314 | Zbl 0175.19001

[2] Alekseevsky, D. V.-Cortés, V., Homogeneous quaternionic Kähler manifolds of unimodular group, Bolletino U. M. I., 11-B (1997), no. Suppl. fasc. 2, 217-229. | MR 1456262 | Zbl 0930.53035

[3] Bielawski, R., Invariant hyperKähler metrics with a homogeneous complex structure, Math. Proc. Camb. Phil. Soc., 122 (1997), 473-482. | MR 1466650 | Zbl 0893.53019

[4] Burstall, F. E.-Rawnsley, J. H., Twistor theory for Riemannian symmetric spaces, with applications to harmonic maps of Riemann surfaces, Lecture Notes in Mathematics, vol. 1424, Springer-Verlag, 1990. | MR 1059054 | Zbl 0699.53059

[5] Cartan, E., Sur une classe remarquable d'espace de riemann, Bull. Soc. Math. France, 54 (1926), 214-264 (part 1). | JFM 52.0425.01 | MR 1504900

[6] Cartan, E., Sur une classe remarquable d'espace de riemann, Bull. Soc. Math. France, 55 (1927), 114-134 (part 2). | JFM 53.0390.01 | MR 1504909

[7] Dancer, A. S.-Swann, A. F., HyperKähler metrics of cohomogeneity one, J. Geom. and Phys., 21 (1997), 218-230. | MR 1429098 | Zbl 0909.53032

[8] Dancer, A. S.-Swann, A. F., Quaternionic Kähler manifolds of cohomogeneity one, International J. Math., 10, no. 5 (1999), 541-570. | MR 1708077 | Zbl 1066.53510

[9] Eguchi, T.-Hanson, A., Asymptotically flat self-dual solutions to Euclidean gravity, Phys. Lett. B, 74 (1978), 249-251. | MR 540896

[10] Hitchin, N. J., Monopoles, minimal surfaces and algebraic curves, Les presses del'Université de Montréal, Montréal, 1987. | MR 935967 | Zbl 0644.53059

[11] Kobak, P. Z.-Swann, A. F., HyperKähler potentials in cohomogeneity two, J. reine angew. Math., 531 (2001), 121-139. | MR 1810118 | Zbl 1037.53031

[12] Kronheimer, P. B., Instantons and the geometry of the nilpotent variety, J. Differential Geom., 32 (1990), 473-490. | MR 1072915 | Zbl 0725.58007

[13] Swann, A. F., HyperKähler and quaternionic Kähler geometry, Math. Ann., 289 (1991), 421-450. | MR 1096180 | Zbl 0711.53051

[14] Wolf, J. A., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., 14 (1965), 1033-1047. | MR 185554 | Zbl 0141.38202