Sia un grupo di Lie compatto e semplice. Sia la più piccola orbita nilpotente non-banale nell'algebra di Lie complessa . Si presenta una costruzione diretta di teoria di Lie delle metriche iperKahler su con potenziale Kahleriano -invariante e compatibili con la forma simplettica complessa di Kostant-Kirillov-Souriau. In particolare si ottengono le metriche iperKahler dei fibrati associati sugli spazi di Wolf (spazi simmetrici quaternionali a curvatura scalare positiva).
@article{BUMI_2001_8_4B_3_587_0,
author = {Piotr Kobak and Andrew Swann},
title = {The hyperK\"ahler geometry associated to Wolf spaces},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {4-A},
year = {2001},
pages = {587-595},
zbl = {1182.53041},
mrnumber = {1859424},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_3_587_0}
}
Kobak, Piotr; Swann, Andrew. The hyperKähler geometry associated to Wolf spaces. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 587-595. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_3_587_0/
[1] , Compact quaternion spaces, Funktsional. Anal. i Prilozhen., 2, no. 2 (1968), 11-20, English translation: Functional Anal. Appl., 2 (1968), 106-114. | MR 231314 | Zbl 0175.19001
[2] -, Homogeneous quaternionic Kähler manifolds of unimodular group, Bolletino U. M. I., 11-B (1997), no. Suppl. fasc. 2, 217-229. | MR 1456262 | Zbl 0930.53035
[3] , Invariant hyperKähler metrics with a homogeneous complex structure, Math. Proc. Camb. Phil. Soc., 122 (1997), 473-482. | MR 1466650 | Zbl 0893.53019
[4] -, Twistor theory for Riemannian symmetric spaces, with applications to harmonic maps of Riemann surfaces, Lecture Notes in Mathematics, vol. 1424, Springer-Verlag, 1990. | MR 1059054 | Zbl 0699.53059
[5] , Sur une classe remarquable d'espace de riemann, Bull. Soc. Math. France, 54 (1926), 214-264 (part 1). | JFM 52.0425.01 | MR 1504900
[6] , Sur une classe remarquable d'espace de riemann, Bull. Soc. Math. France, 55 (1927), 114-134 (part 2). | JFM 53.0390.01 | MR 1504909
[7] -, HyperKähler metrics of cohomogeneity one, J. Geom. and Phys., 21 (1997), 218-230. | MR 1429098 | Zbl 0909.53032
[8] -, Quaternionic Kähler manifolds of cohomogeneity one, International J. Math., 10, no. 5 (1999), 541-570. | MR 1708077 | Zbl 1066.53510
[9] -, Asymptotically flat self-dual solutions to Euclidean gravity, Phys. Lett. B, 74 (1978), 249-251. | MR 540896
[10] , Monopoles, minimal surfaces and algebraic curves, Les presses del'Université de Montréal, Montréal, 1987. | MR 935967 | Zbl 0644.53059
[11] -, HyperKähler potentials in cohomogeneity two, J. reine angew. Math., 531 (2001), 121-139. | MR 1810118 | Zbl 1037.53031
[12] , Instantons and the geometry of the nilpotent variety, J. Differential Geom., 32 (1990), 473-490. | MR 1072915 | Zbl 0725.58007
[13] , HyperKähler and quaternionic Kähler geometry, Math. Ann., 289 (1991), 421-450. | MR 1096180 | Zbl 0711.53051
[14] , Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., 14 (1965), 1033-1047. | MR 185554 | Zbl 0141.38202