Un sottogruppo di un gruppo si dice nearly normal se ha indice finito nella sua chiusura normale . In questa nota si caratterizzano i gruppi in cui ogni sottogruppo che non sia nearly normal soddisfa una fissata condizione finitaria per diverse scelte naturali della proprietà .
@article{BUMI_2001_8_4B_2_531_0, author = {Maria De Falco}, title = {Groups with many nearly normal subgroups}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4-A}, year = {2001}, pages = {531-540}, zbl = {1147.20302}, mrnumber = {1832003}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_2_531_0} }
De Falco, Maria. Groups with many nearly normal subgroups. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 531-540. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_2_531_0/
[1] Radical groups with finite abelian sugroup rank, Illinois J. Math., 16 (1972), 533-580. | MR 327909 | Zbl 0248.20052
- ,[2] Groups with restricted non-normal subgroups, Math. Z., 176 (1981), 199-221. | MR 607962 | Zbl 0474.20014
- ,[3] Groups satisfying the minimal condition on certain non-normal subgroups, Proceedings of Groups Korea 1994, de Gruyter, Berlin (1995), 107-118. | MR 1476951 | Zbl 0868.20031
- ,[4] On groups with many almost normal subgroups, Ann. Mat. Pura Appl. (4), 169 (1995), 35-65. | MR 1378469 | Zbl 0853.20024
- - ,[5] Groups with polycyclic non-normal subgroups, Algebra Colloq., 7 (2000), 33-42. | MR 1810594 | Zbl 0958.20030
- - ,[6] Groups satisfyng the maximal condition on non-(nearly normal) subgroups, Ricerche Mat., to appear. | MR 1848347 | Zbl 1163.20308
,[7] Groups with a nilpotent-by-finite triple factorization, Arch. Math. (Basel), 51 (1988), 393-400. | MR 970352 | Zbl 0629.20016
,[8] Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955), 76-96. | MR 72137 | Zbl 0064.25201
,[9] On soluble Min-by-Max groups, Math. Ann., 186 (1970), 282-296. | MR 262372 | Zbl 0194.33403
,[10] | Zbl 0243.20033
, Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin (1972).[11] Metahamiltonian groups, Ural Gos. Univ. Mat. Zap., 5 (1966), 101-106. | MR 202837 | Zbl 0351.20020
- ,[12] Metahamiltonian groups II, Ural Gos. Univ. Mat. Zap., 6 (1968), 52-58. | MR 269733
- ,[13] Metahamiltonian groups III, Ural Gos. Univ. Mat. Zap., 7 (1969/70), 195-199. | MR 285610 | Zbl 0324.20036
- ,[14] Groups whose proper quotients have finite derived subgroups, J. Algebra, 118 (1988), 346-368. | MR 969677 | Zbl 0658.20019
- ,[15] On the minimality problem for locally finite groups, Algebra and Logic, 9 (1970), 137-151. | Zbl 0234.20015
,[16] Modules over nilpotent groups of finite rank, Algebra and Logic, 24 (1985), 412-436. | MR 853774 | Zbl 0604.20037
- - ,