Groups with many nearly normal subgroups
De Falco, Maria
Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001), p. 531-540 / Harvested from Biblioteca Digitale Italiana di Matematica

Un sottogruppo H di un gruppo G si dice nearly normal se ha indice finito nella sua chiusura normale HG. In questa nota si caratterizzano i gruppi in cui ogni sottogruppo che non sia nearly normal soddisfa una fissata condizione finitaria χ per diverse scelte naturali della proprietà χ.

Publié le : 2001-06-01
@article{BUMI_2001_8_4B_2_531_0,
     author = {Maria De Falco},
     title = {Groups with many nearly normal subgroups},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4-A},
     year = {2001},
     pages = {531-540},
     zbl = {1147.20302},
     mrnumber = {1832003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_2_531_0}
}
De Falco, Maria. Groups with many nearly normal subgroups. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 531-540. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_2_531_0/

[1] Baer, R.-Heineken, H., Radical groups with finite abelian sugroup rank, Illinois J. Math., 16 (1972), 533-580. | MR 327909 | Zbl 0248.20052

[2] Bruno, B.-Phillips, R. E., Groups with restricted non-normal subgroups, Math. Z., 176 (1981), 199-221. | MR 607962 | Zbl 0474.20014

[3] Franciosi, S.-De Giovanni, F., Groups satisfying the minimal condition on certain non-normal subgroups, Proceedings of Groups Korea 1994, de Gruyter, Berlin (1995), 107-118. | MR 1476951 | Zbl 0868.20031

[4] Franciosi, S.-De Giovanni, F.-Kurdachenko, L. A., On groups with many almost normal subgroups, Ann. Mat. Pura Appl. (4), 169 (1995), 35-65. | MR 1378469 | Zbl 0853.20024

[5] Franciosi, S.-De Giovanni, F.-Newell, M. L., Groups with polycyclic non-normal subgroups, Algebra Colloq., 7 (2000), 33-42. | MR 1810594 | Zbl 0958.20030

[6] Galoppo, A., Groups satisfyng the maximal condition on non-(nearly normal) subgroups, Ricerche Mat., to appear. | MR 1848347 | Zbl 1163.20308

[7] Halbritter, N., Groups with a nilpotent-by-finite triple factorization, Arch. Math. (Basel), 51 (1988), 393-400. | MR 970352 | Zbl 0629.20016

[8] Neumann, B. H., Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955), 76-96. | MR 72137 | Zbl 0064.25201

[9] Newell, M. L., On soluble Min-by-Max groups, Math. Ann., 186 (1970), 282-296. | MR 262372 | Zbl 0194.33403

[10] Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin (1972). | Zbl 0243.20033

[11] Romalis, G. M.-Sesekin, N. F., Metahamiltonian groups, Ural Gos. Univ. Mat. Zap., 5 (1966), 101-106. | MR 202837 | Zbl 0351.20020

[12] Romalis, G. M.-Sesekin, N. F., Metahamiltonian groups II, Ural Gos. Univ. Mat. Zap., 6 (1968), 52-58. | MR 269733

[13] Romalis, G. M.-Sesekin, N. F., Metahamiltonian groups III, Ural Gos. Univ. Mat. Zap., 7 (1969/70), 195-199. | MR 285610 | Zbl 0324.20036

[14] Robinson, D. J. S.-Zhang, Z., Groups whose proper quotients have finite derived subgroups, J. Algebra, 118 (1988), 346-368. | MR 969677 | Zbl 0658.20019

[15] Šunkov, V. S., On the minimality problem for locally finite groups, Algebra and Logic, 9 (1970), 137-151. | Zbl 0234.20015

[16] Zaicev, D. I.-Kurdachenko, L. A.-Tushev, A. V., Modules over nilpotent groups of finite rank, Algebra and Logic, 24 (1985), 412-436. | MR 853774 | Zbl 0604.20037