In questo lavoro vengono studiate le algebre di Albert-Frank-Shalev. Queste sono algebre di Lie modulari di dimensione infinita, ottenute da un loop di certe algebre semplici di dimensione finita. Si dimostra che le algebre di Albert-Frank-Shalev sono unicamente determinate, a meno di elementi centrali o secondo centrali, da un certo quoziente finito-dimensionale. Tale risultato si ottiene dando la presentazione finita di un'algebra il cui quoziente sul secondo centro (infinito-dimensionale) è isomorfo alle algebre di Albert-Frank-Shalev.
@article{BUMI_2001_8_4B_2_391_0,
author = {Claretta Carrara},
title = {(Finite) presentations of the Albert-Frank-Shalev Lie algebras},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {4-A},
year = {2001},
pages = {391-427},
zbl = {1177.17018},
mrnumber = {1831996},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_2_391_0}
}
Carrara, Claretta. (Finite) presentations of the Albert-Frank-Shalev Lie algebras. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 391-427. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_2_391_0/
[AF55] and , Simple Lie algebras of characteristic , Univ. e Politec. Torino. Rend. Sem. Mat., 14 (1954-55), 117-139. | MR 79222 | Zbl 0065.26801
[Bla58] , On a special class of -groups, Acta Math., 100 (1958), 45-92. | MR 102558 | Zbl 0083.24802
[C99] , Central extensions of Albert-Frank-Shalev Lie algebras, in preparation (1999).
[CMN97] --, Graded Lie algebras of maximal class, Trans. Amer. Math. Soc., 349, no. 10 (1997), 4021-4051. | MR 1443190 | Zbl 0895.17031
[CN99] -, Graded Lie algebras of maximal class. II, J. Algebra, 229, no. 2 (2000), 750-784. | MR 1769297 | Zbl 0971.17015
[HNO95] --, ANU -Quotient Program, Version 1.2, written in C, available from maths.anu.edu.au by anonymous ftp in the directory /pub/PQ, as a share library with GAP 3.4 and as part of Magma (1995).
[Jur99] , Graded Lie algebras of maximal class. III, in preparation (1999). | Zbl 1058.17020
[Kos96] , The beginnings of modular Lie algebra theory, Group theory, algebra, and number theory (Saarbrücken, 1993) (Berlin), de Gruyter, Berlin (1996), 13-52. | MR 1440203 | Zbl 0874.17021
[Luc78] , Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France, 6 (1878), 49-74. | JFM 10.0139.04 | MR 1503769
[Rob82] , A course in the theory of groups, Graduate Texts in Mathematics, Springer-Verlag, New York, 80 (1982). | MR 648604 | Zbl 0483.20001
[S+95] ET AL., GAP - Groups, Algorithms and Programming, Release 3.4, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany (1995).
[Sha94] , Simple Lie algebras and Lie algebras of maximal class, Arch. Math. (Basel), 63, no. 4 (1994), 297-301. | MR 1290602 | Zbl 0803.17006
[Sha95] , Finite -groups, Finite and locally finite groups (Istanbul, 1994) (Dordrecht), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., 471 (1995), 401-450. | MR 1362818 | Zbl 0839.20028