In questo lavoro studiamo i non CC-gruppi monolitici con tutti i quozienti propri CC-gruppi, che hanno sottogruppi abeliani normali non banali.
@article{BUMI_2001_8_4B_2_381_0, author = {L. A. Kurdachenko and J. Otal}, title = {Simple modules over CC-groups and monolithic just non-CC-groups}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4-A}, year = {2001}, pages = {381-390}, zbl = {1076.20027}, mrnumber = {1831995}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_2_381_0} }
Kurdachenko, L. A.; Otal, J. Simple modules over CC-groups and monolithic just non-CC-groups. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 381-390. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_2_381_0/
[1] Irreducible groups of automorphisms of abelian groups, Pacific J. Math., 14 (1994), 385-406. | MR 165019 | Zbl 0126.04901
,[2] | MR 1169099 | Zbl 0753.20001
- , Finite soluble groups, de Gruyter, Berlin, 1992.[3] Soluble groups with many Chernikov quotients, Atti Ac. Naz. Lincei (8), 79 (1985), 12-24. | MR 944386 | Zbl 0639.20020
- ,[4] Groups whose proper quotients are FC-groups, J. Algebra, 186 (1996), 544-577. | MR 1423275 | Zbl 0866.20030
- - ,[5] Groups with Chernikov conjugacy classes, J. Austral. Math. Soc. Ser A, 50 (1991), 1-14. | MR 1094054 | Zbl 0748.20025
- - ,[6] Soluble groups with every proper quotient polycyclic, Illinois J. Math., 22 (1978), 90-95. | MR 474887 | Zbl 0366.20017
,[7] On the finiteness of certain soluble groups, Proc. London Math. Soc., 9 (1959), 595-622. | MR 110750 | Zbl 0091.02501
,[8] Injective modules and soluble groups satisfying the minimal condition for normal subgroups, Bull. Austral. Math. Soc., 4 (1971), 113-135. | MR 276320 | Zbl 0206.03101
- ,[9] Some classes of groups with the weak minimal and maximal conditions, Ukrainian Math. j., 42 (1990), 937-942. | MR 1078821 | Zbl 0719.20014
,[10] Groups whose proper factors have Chernikov conjugacy classes, to appear.
- ,[11] On generalized central series of groups, Ricerche Mat., 44 (1995), 337-347. | MR 1469705 | Zbl 0918.20024
,[12] Infinite groups whose proper quotients are finite, Comm. Pure Applied Math., 21 (1968), 545-562. | MR 237637 | Zbl 0157.05501
,[13] Infinite groups whose proper quotients are finite, Comm. Pure Applied Math., 23 (1970), 767-789. | MR 265466 | Zbl 0196.04404
,[14] On a class of metabelian groups, Proc. London. Math. Soc., 10 (1960), 354-364. | MR 117293 | Zbl 0099.25202
,[15] On a class of nilpotent groups, Proc. London. Math. Soc., 10 (1960), 365-375. | MR 120278 | Zbl 0099.25203
,[16] Groups with extremal classes of conjugate elements, Siberian Math. J., 5 (1964), 891-895. | MR 168658
,[17] 62-63, Springer-Verlag, Berlin, 1972. | Zbl 0243.20032
, Finiteness conditions and generalized soluble groups, Ergebnisse der mathematik bands[18] The vanishing of certain homology and cohomology groups, J. Pure and Applied Algebra, 2 (1976), 145-167. | MR 404478 | Zbl 0329.20032
,[19] Soluble groups with many polycyclic quotients, Proc. London Math. Soc. (3), 48 (1984), 193-229. | MR 729068 | Zbl 0505.20023
- ,[20] Groups whose proper quotients have finite derived group, J. Algebra, 118 (1988), 346-368. | MR 969677 | Zbl 0658.20019
- ,[21] Some properties of groups inherited by normal subgroups of finite index, Math. Z., 114 (1970), 19-21. | MR 258932 | Zbl 0185.05303
,[22] Groups with every proper quotient finite, Proc. Cambridge Phil. Soc., 69 (1971), 373-391. | MR 274575 | Zbl 0216.08803
,[23] On the existence of direct complements in groups with operators, Investigations in group theory, Math. Inst. Kiev (1976), 26-44. | MR 476879 | Zbl 0416.20020
,[24] Products of abelian groups, Algebra and Logic, 19 (1980), 94-106. | MR 604664 | Zbl 0466.20012
,