On lower semicontinuity in the calculus of variations
Leoni, Giovanni
Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001), p. 345-364 / Harvested from Biblioteca Digitale Italiana di Matematica

Vengono studiate proprietà di semicontinuità per integrali multipli uWk,1Ω;RdΩfx,ux,kuxdx quando f soddisfa a condizioni di semicontinuità nelle variabili x,u,,k-1ux e può non essere soggetta a ipotesi di coercitività, e le successioni ammissibili in Wk,1Ω;Rd convergono fortemente in Wk-1,1Ω;Rd.

Publié le : 2001-06-01
@article{BUMI_2001_8_4B_2_345_0,
     author = {Giovanni Leoni},
     title = {On lower semicontinuity in the calculus of variations},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4-A},
     year = {2001},
     pages = {345-364},
     zbl = {1072.49011},
     mrnumber = {1831993},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_2_345_0}
}
Leoni, Giovanni. On lower semicontinuity in the calculus of variations. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 345-364. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_2_345_0/

[1] Acerbi, E.-Dal Maso, G., New lower semicontinuity results for polyconvex integrals case, Cal. Var., 2 (1994), 329-372. | MR 1385074 | Zbl 0810.49014

[2] Acerbi, E.-Fusco, N., Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal., 86 (1984), 125-145. | MR 751305 | Zbl 0565.49010

[3] Agmon, S.-Douglis, A.-Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727. | MR 125307 | Zbl 0093.10401

[4] Amar, M.-De Cicco, V., Relaxation of quasi-convex integrals of arbitrary order, Proc. Roy. Soc. Edin., 124 (1994), 927-946. | MR 1303762 | Zbl 0831.49025

[5] Alberti, G.-Mantegazza, C., A note on the theory of SBV functions, Boll. Un. Mat. Ital. B, 11 (1997), 375-382. | MR 1459286 | Zbl 0877.49001

[6] Ambrosio, L., New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL, 11 (1987), 1-42. | MR 930856 | Zbl 0642.49007

[7] Ambrosio, L., A compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital., 3B 7 (1989), 857-881. | MR 1032614 | Zbl 0767.49001

[8] Ambrosio, L., Existence theory for a new class, Arch. Rat. Mech. Anal., 111 (1990), 291-322. | MR 1068374 | Zbl 0711.49064

[9] Ambrosio, L., On the lower semicontinuity of quasi-convex integrals in SBV, Nonlinear Anal., 23 (1994), 405-425. | MR 1291580 | Zbl 0817.49017

[10] Ambrosio, L.-Dal Maso, G., On the relaxation in BVΩ;Rm of quasi-convex integrals, J. Funct. Anal., 109 (1992), 76-97. | Zbl 0769.49009

[11] Ambrosio, L.-Fusco, N.-Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford University Press, 2000. | MR 1857292 | Zbl 0957.49001

[12] Ambrosio, L.-Mortola, S.-Tortorelli, V. M., Functional with linear growth defined on vector-valued BV functions, J. Math. Pures et Appl., 70 (1991), 269-332. | MR 1113814 | Zbl 0662.49007

[13] Ball, J., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1977), 337-403. | MR 475169 | Zbl 0368.73040

[14] Ball, J.-Currie, J.-Olver, P., Null lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41 (1981), 315-328. | MR 615159 | Zbl 0459.35020

[15] Ball, J. M.-Murat, F., Remarks on Chacon's biting lemma, Proc. AMS, 107 (1989), 655-663. | MR 984807 | Zbl 0678.46023

[16] Boccardo, L.-Giachetti, D.-Diaz, J. I.-Murat, F., Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Diff. Eq., 106 (1993), 215-237. | MR 1251852 | Zbl 0803.35046

[17] Bouchitté, G., Fonseca, I. - Malý, J., Relaxation of multiple integrals below the growth exponent, Proc. Royal Soc. Edin., 128A (1998), 463-479. | MR 1632814 | Zbl 0907.49008

[18] Bouchitté, G.-Fonseca, I.-Mascarenhas, L., A global method for relaxation, Arch. Rat. Mech. Anal., 145 (1998), 51-98. | MR 1656477 | Zbl 0921.49004

[19] Braides, A., Approximation of free-discontinuity problems, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998. | MR 1651773 | Zbl 0909.49001

[20] Braides, A.-Defranceschi, A., Homogenization of multiple integrals, Oxford Lecture Series in Mathematics and its Applications, 12, The Clarendon Press, Oxford University Press, New York, 1998. | MR 1684713 | Zbl 0911.49010

[21] Braides, A.-Fonseca, I.-Leoni, G., A-quasiconvexity: relaxation and homogenization, to appear in COCV. | Zbl 0971.35010

[22] Carbone L., M.-De Arcangelis, R., Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions, Richerche Mat., 39 (1990), 99-129. | MR 1101308 | Zbl 0735.49008

[23] Carriero, M.-Leaci, A.-Tomarelli, F., Special bounded hessian and elastic-plastic plate, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 16 (1992), 223-258. | MR 1205753 | Zbl 0829.49014

[24] Carriero, M.-Leaci, A.-Tomarelli, F., Strong minimizers of Blake & Zisserman functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 257-285. | Zbl 1015.49010

[25] Carriero, M.-Leaci, A.-Tomarelli, F., A second order model in image segmentation: Blake & Zisserman functional, Progr. Nonlinear Differential Equations Appl., 25, Birkhäuser, 25 (1996), 57-72. | Zbl 0915.49004

[26] Celada, P.-Dal Maso, G., Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. Henri Poincaré, Ann. Non Lin., 11 (1994), 661-691. | MR 1310627 | Zbl 0833.49013

[27] Černý, R.-Malý, J., Counterexample to lower semicontinuity in Calculus of Variations, to appear in Math. Z. | MR 1872570 | Zbl 1024.49014

[28] Choksi, R.-Fonseca, I., Bulk and interfacial energy densities for structured deformations of continua, Arch. Rat. Mech. Anal., 138 (1997), 37-103. | MR 1463803 | Zbl 0891.73078

[29] Dacorogna, B., Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Funct. Anal., 46 (1982), 102-118. | MR 654467 | Zbl 0547.49003

[30] Dacorogna, B., Direct methods in the calculus of variations, Springer-Verlag, New York, 1989. | MR 990890 | Zbl 0703.49001

[31] Dacorogna, B.-Marcellini, P., Semicontinuité pour des intégrandes polyconvexes sans continuité des determinants, C. R. Acad. Sci. Paris Sér. I Math., 311, 6 (1990), 393-396. | MR 1071650 | Zbl 0723.49007

[32] Dal Maso, G., Integral representation on BVΩ of Γ-limits of variational integrals, Manuscripta Math., 30 (1980), 387-416. | MR 567216 | Zbl 0435.49016

[33] Dal Maso, G.-Sbordone, C., Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z., 218 (1995), 603-609. | MR 1326990 | Zbl 0822.49010

[34] De Cicco, V., A lower semicontinuity result for functionals defined on BVΩ, Ricerche di Mat., 39 (1990), 293-325. | MR 1114522 | Zbl 0735.49010

[35] De Cicco, V., Lower semicontinuity for certain integral functionals on BVΩ, Boll. U.M.I., 5-B (1991), 291-313. | MR 1111124 | Zbl 0738.46012

[36] De Giorgi, E.-Ambrosio, L., Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 82 (1988), 199-210. | MR 1152641 | Zbl 0715.49014

[37] De Giorgi, E.-Buttazzo, G.-Dal Maso, G., On the lower semicontinuity of certain integral functions, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend., 74 (1983), 274-282. | MR 758347 | Zbl 0554.49006

[38] De Giorgi, E.-Carriero, M.-Leaci, A., Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal., 108 (1989), 195-218. | MR 1012174 | Zbl 0682.49002

[39] Del Piero, G.-Owen, D. R., Structured deformations of continua, Arch. Rat. Mech. Anal., 124 (1993), 99-155. | MR 1237908 | Zbl 0795.73005

[40] Demengel, F., Fonctions á hessien borné, Ann. Inst. Fourier (Grenoble), 34 (1984), 155-190. | MR 746501 | Zbl 0525.46020

[41] Demengel, F., Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Arch. Rat. Mech. Anal., 105 (1989), 123-161. | MR 968458 | Zbl 0669.73030

[42] Eisen, G., A counterexample for some lower semicontinuity results, Math. Z., 162 (1978), 241-243. | MR 508840 | Zbl 0369.49009

[43] Ekeland I., I.-Temam, R., Convex analysis and variational problems, North-Holland Publishing Company (1976). | MR 463994 | Zbl 0322.90046

[44] Evans, L. C.-Gariepy, R. F., Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, 1992. | MR 1158660 | Zbl 0804.28001

[45] Fonseca, I., The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures et Appl., 67 (1988), 175-195. | MR 949107 | Zbl 0718.73075

[46] Fonseca, I.-Leoni, G., On lower semicontinuity and relaxation, to appear in the Proc. Royal Soc. Edin. | MR 1838501 | Zbl 1003.49015

[47] Fonseca, I.-Leoni, G., Some remarks on lower semicontinuity and relaxation, to appear in Indiana Univ. Math. J. | MR 1793684 | Zbl 0980.49018

[48] Fonseca, I.-Leoni, G., Malý, J. - Paroni, R., A note on Meyers' Theorem in Wk,1, to appear. | MR 1911518 | Zbl 1006.49006

[49] Fonseca, I.-Malý, J., Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré, Analyse non Linéaire, 14 (1997), 308-338. | MR 1450951 | Zbl 0868.49011

[50] Fonseca, I.-Malý, J., Weak convergence of minors, to appear.

[51] Fonseca, I.-Marcellini, P., Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geom. Anal., 7 (1997), 57-81. | MR 1630777 | Zbl 0915.49011

[52] Fonseca, I.-Müller, S., Quasi-convex integrands and lower semicontinuity in L1, SIAM J. Math. Anal., 23 (1992), 1081-1098. | MR 1177778 | Zbl 0764.49012

[53] Fonseca, I.-Müller, S., Relaxation of quasiconvex functionals in BVΩ,Rp for integrands fx,u,u, Arch. Rat. Mech. Anal., 123 (1993), 1-49. | MR 1218685 | Zbl 0788.49039

[54] Fonseca I., I.-Müller, S., A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal., 30 (1999), 1355-1390. | MR 1718306 | Zbl 0940.49014

[55] Fusco, N., Dualità e semicontinuità per integrali del tipo dell'area, Rend. Accad. Sci. Fis. Mat., IV. Ser., 46 (1979), 81-90. | Zbl 0445.49017

[56] Fusco, N., Quasiconvessità e semicontinuità per integrali multipli di ordine superiore, Ricerche Mat., 29 (1980), 307-323. | Zbl 0508.49012

[57] Fusco, N.-Hutchinson, J. E., A direct proof for lower semicontinuity of polyconvex functionals, Manuscripta Math., 85 (1995), 35-50. | MR 1329439 | Zbl 0874.49015

[58] Gangbo, W., On the weak lower semicontinuity of energies with polyconvex integrands, J. Math. Pures et Appl., 73 (1994), 455-469. | MR 1300984 | Zbl 0829.49011

[59] Guidorzi, M.-Poggiolini, L., Lower semicontinuity for quasiconvex integrals of higher order, NoDEA, 6 (1999), 227-246. | MR 1691445 | Zbl 0930.35059

[60] Kristensen, J., Lower semicontinuity in spaces of weakly differentiable functions, Math. Ann., 313 (1999), 653-710. | MR 1686943 | Zbl 0924.49012

[61] Larsen, C., Quasiconvexification in Wp and optimal jump microstructure in BV relaxation, SIAM J. Math. Anal., 29 (1998), 823-848. | MR 1617734 | Zbl 0915.49005

[62] Liu, F. C., A Luzin type property of Sobolev functions, Indiana Univ. Math. J., 26 (1977), 645-651. | MR 450488 | Zbl 0368.46036

[63] Malý, J., Weak lower semicontinuity of polyconvex integrals, Proc. Royal Soc. Edin., 123A (1993), 681-691. | MR 1237608 | Zbl 0813.49017

[64] Malý, J., Lower semicontinuity of quasiconvex integrals, Manuscripta Math., 85 (1994), 419-428. | MR 1305752 | Zbl 0862.49017

[65] Marcellini, P., Approximation of quasiconvex functions and lower semicontinuity of multiple integrals quasiconvex integrals, Manuscripta Math., 51 (1985), 1-28. | MR 788671 | Zbl 0573.49010

[66] Marcellini, P., On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse non Linéaire, 3 (1986), 391-409. | MR 868523 | Zbl 0609.49009

[67] Marcellini, P. - Sbordone, C., Semicontinuity problems in the calculus of variations, Nonlinear Analysis, 4 (1980), 241-257. | MR 0563807 | Zbl 0537.49002

[68] Meyers, N., Quasi-convexity - lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc., 119 (1965), 125-149. | MR 0188838 | Zbl 0166.38501

[69] Morrey, C. B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), 25-53. | MR 0054865 | Zbl 0046.10803

[70] Morrey, C. B., Multiple integrals in the Calculus of Variations, Springer, Berlin, 1966. | MR 0202511 | Zbl 0142.38701

[71] Owen, D. R. - Paroni, R., Second-order structured deformations, accepted by Arch. Rat. Mech. Anal. | MR 1808369 | Zbl 0990.74004

[72] Serrin, J., On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc., 161 (1961), 139-167. | MR 0138018 | Zbl 0102.04601

[73] Stein, E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. | MR 0290095 | Zbl 0207.13501

[74] Struwe, M., Variational methods, Springer, Berlin, 2000. | MR 1736116 | Zbl 0939.49001

[75] Temam, T., Problémes mathématiques en plasticité, Gauthier-Villars, Paris, 1983. | MR 0711964 | Zbl 0547.73026

[76] Trombetti, C., On lower semicontinuity and relaxation properties of certain classes of variational integrals, Rend. Accad. Naz. Sci. XL., 21 (1997), 25-51. | MR 1612791

[77] Ziemer, W. P., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Springer-Verlag, New York, 1989. | MR 1014685 | Zbl 0692.46022