Si considera una classe di equazioni ellittiche semilineari su della forma con sottocritico (o con nonlinearità più generali) e funzione limitata. In questo articolo viene presentato un risultato di genericità sull'esistenza di infinite soluzioni, rispetto alla classe di coefficienti limitati su e non negativi all'infinito.
@article{BUMI_2001_8_4B_2_311_0, author = {Francesca Alessio and Paolo Caldiroli and Piero Montecchiari}, title = {Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4-A}, year = {2001}, pages = {311-317}, zbl = {1024.35033}, mrnumber = {1831991}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_2_311_0} }
Alessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero. Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 311-317. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_2_311_0/
[1] Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Diff. Eq., 96 (1992), 88-115. | MR 1153310 | Zbl 0766.35009
- ,[2] Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity, Ann. Inst. H. Poincaré, Anal. non linéaire, 16 (1999), 107-135. | MR 1668564 | Zbl 0919.34044
- ,[3] Genericity of the multibump dynamics for almost periodic Duffing-like systems, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 885-901. | MR 1719214 | Zbl 0941.34032
- - ,[4] Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in , Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1998), 47-68. | MR 1658893 | Zbl 0931.35047
- - ,[5] On the existence of homoclinics for the asymptotically periodic Duffing equation, Top. Meth. Nonlinear Anal., 12 (1998), 275-292. | MR 1701264 | Zbl 0931.34028
- - ,[6] Homoclinics: Poincarè-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 233-252. | MR 1614571 | Zbl 1004.37043
- ,[7] Semiclassical states of nonlinear Schrödinger equation, Arch. Rat. Mech. Anal., 140 (1997), 285-300. | MR 1486895 | Zbl 0896.35042
- - ,[8] The Shadowing Lemma for Elliptic PDE, Dynamics of Infinite Dimensional Systems ( and eds.) F37 (1987). | MR 921893 | Zbl 0653.35030
,[9] On a Min-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in , Rev. Mat. Iberoamericana, 6 (1990), 1-15. | MR 1086148 | Zbl 0731.35036
- ,[10] On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré, Anal. non linéaire, 14 (1997), 365-413. | MR 1450954 | Zbl 0883.35045
- ,[11] Nonlinear scalar field equations, Arch. Rat. Mech. Anal., 82 (1983), 313-345. | MR 695535 | Zbl 0533.35029
- ,[12] | MR 68029 | Zbl 0065.07102
, Almost Periodic Functions, Dover Pubblications Inc. (1954).[13] Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in , Nonlinear Anal. T.M.A., 15 (1990), 1045-1052. | MR 1082280 | Zbl 0729.35049
,[14] Multiple solutions of a semilinear elliptic equation in , Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 593-604. | MR 1253603 | Zbl 0797.35039
,[15] Multiplicity of positive and nodal solutions for nonlinear elliptic problems in , Ann. Inst. H. Poincaré, Anal. Non Linéaire, 13 (1996), 567-588. | MR 1409663 | Zbl 0859.35032
AND ,[16] A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), 133-160. | MR 1070929 | Zbl 0731.34050
- - ,[17] Homoclinic type solutions for a semilinear elliptic PDE on , Comm. Pure Appl. Math., 45 (1992), 1217-1269. | MR 1181725 | Zbl 0785.35029
- ,[18] Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 127-149. | MR 1614646 | Zbl 0901.35023
- ,[19] On the existence of a positive entire solution of a semilinear elliptic equation, Arch. Rat. Mech. Anal., 91 (1986), 283-308. | MR 807816 | Zbl 0616.35029
- ,[20] Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, 93 (1982), 1-14. | MR 688279 | Zbl 0506.35035
- ,[21] Symmetry of positive solutions of nonlinear elliptic equations in , Math. Anal. Appl. Part A, Adv. Math. Suppl. Studies, 7A (1981), 369-402. | Zbl 0469.35052
- - ,[22] Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. Part. Diff. Eq., 21 (1996), 787-820. | MR 1391524 | Zbl 0857.35116
,[23] Remarks on a semilinear elliptic equations on , J. Diff. Eq., 74 (1988), 34-39. | MR 949624 | Zbl 0662.35038
,[24] Prescribing scalar curvature on , and related problems, J. Funct. Anal., 118 (1993), 43-118. | MR 1245597 | Zbl 0790.53040
,[25] On a singularly perturbed elliptic equation, Adv. Diff. Eq., 2 (1997), 955-980. | MR 1606351 | Zbl 1023.35500
,[26] The concentration–compactness principle in the calculus of variations: the locally compact case, Part I and II, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109-145 and 223-283. | Zbl 0704.49004
,[27] Multiplicity results for a class of Semilinear Elliptic Equations on , Rend. Sem. Mat. Univ. Padova, 95 (1996), 1-36. | MR 1405365 | Zbl 0866.35043
,[28] Multiple positive solutions of a scalar field equation in , Top. Meth. Nonlinear Anal., 7 (1996), 171-185. | MR 1422010 | Zbl 0909.35042
,[29] Some aspects of semilinear elliptic equations, Nonlinear diffusion equations and their equilibrium states ( , and , eds.) Springer Verlag, Berlin (1988). | MR 956087 | Zbl 0676.35026
,[30] A note on a semilinear elliptic equation on , Nonlinear Analysis, a tribute in honour of Giovanni Prodi ( and , eds., Quaderni della Scuola Normale Superiore, Pisa) (1991). | MR 1205369 | Zbl 0836.35045
,[31] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. | MR 1162728 | Zbl 0763.35087
,[32] Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 561-590. | MR 1249107 | Zbl 0803.58013
,[33] Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1979), 149-162. | MR 454365 | Zbl 0356.35028
,[34] Bifurcation in for a semilinear elliptic equation, Proc. London Math. Soc., 57 (1988), 511-541. | MR 960098 | Zbl 0673.35005
,