Infinitely many solutions for a class of semilinear elliptic equations in RN
Alessio, Francesca ; Caldiroli, Paolo ; Montecchiari, Piero
Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001), p. 311-317 / Harvested from Biblioteca Digitale Italiana di Matematica

Si considera una classe di equazioni ellittiche semilineari su RN della forma -Δu+u=axup-1u con p>1 sottocritico (o con nonlinearità più generali) e ax funzione limitata. In questo articolo viene presentato un risultato di genericità sull'esistenza di infinite soluzioni, rispetto alla classe di coefficienti ax limitati su RN e non negativi all'infinito.

Publié le : 2001-06-01
@article{BUMI_2001_8_4B_2_311_0,
     author = {Francesca Alessio and Paolo Caldiroli and Piero Montecchiari},
     title = {Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4-A},
     year = {2001},
     pages = {311-317},
     zbl = {1024.35033},
     mrnumber = {1831991},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_2_311_0}
}
Alessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero. Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 311-317. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_2_311_0/

[1] Alama, S.-Li, Y. Y., Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Diff. Eq., 96 (1992), 88-115. | MR 1153310 | Zbl 0766.35009

[2] Alessio, F.-Montecchiari, P., Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity, Ann. Inst. H. Poincaré, Anal. non linéaire, 16 (1999), 107-135. | MR 1668564 | Zbl 0919.34044

[3] Alessio, F.-Caldiroli, P.-Montecchiari, P., Genericity of the multibump dynamics for almost periodic Duffing-like systems, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 885-901. | MR 1719214 | Zbl 0941.34032

[4] Alessio, F.-Caldiroli, P.-Montecchiari, P., Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in RN, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1998), 47-68. | MR 1658893 | Zbl 0931.35047

[5] Alessio, F.-Caldiroli, P.-Montecchiari, P., On the existence of homoclinics for the asymptotically periodic Duffing equation, Top. Meth. Nonlinear Anal., 12 (1998), 275-292. | MR 1701264 | Zbl 0931.34028

[6] Ambrosetti, A.-Badiale, M., Homoclinics: Poincarè-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 233-252. | MR 1614571 | Zbl 1004.37043

[7] Ambrosetti, A.-Badiale, M.-Cingolani, S., Semiclassical states of nonlinear Schrödinger equation, Arch. Rat. Mech. Anal., 140 (1997), 285-300. | MR 1486895 | Zbl 0896.35042

[8] Angenent, S., The Shadowing Lemma for Elliptic PDE, Dynamics of Infinite Dimensional Systems (S. N. Chow and J. K. Hale eds.) F37 (1987). | MR 921893 | Zbl 0653.35030

[9] Bahri, A.-Li, Y. Y., On a Min-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in Rn, Rev. Mat. Iberoamericana, 6 (1990), 1-15. | MR 1086148 | Zbl 0731.35036

[10] Bahri, A.-Lions, P. L., On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré, Anal. non linéaire, 14 (1997), 365-413. | MR 1450954 | Zbl 0883.35045

[11] Berestycki, H.-Lions, P. L., Nonlinear scalar field equations, Arch. Rat. Mech. Anal., 82 (1983), 313-345. | MR 695535 | Zbl 0533.35029

[12] Besicovitch, A. S., Almost Periodic Functions, Dover Pubblications Inc. (1954). | MR 68029 | Zbl 0065.07102

[13] Cao, D. M., Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in Rn, Nonlinear Anal. T.M.A., 15 (1990), 1045-1052. | MR 1082280 | Zbl 0729.35049

[14] Cao, D. M., Multiple solutions of a semilinear elliptic equation in Rn, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 593-604. | MR 1253603 | Zbl 0797.35039

[15] Cao, D. M. AND Noussair, E. S., Multiplicity of positive and nodal solutions for nonlinear elliptic problems in Rn, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 13 (1996), 567-588. | MR 1409663 | Zbl 0859.35032

[16] Coti Zelati, V.-Ekeland, I.-Seéré, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), 133-160. | MR 1070929 | Zbl 0731.34050

[17] Coti Zelati, V.-Rabinowitz, P. H., Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., 45 (1992), 1217-1269. | MR 1181725 | Zbl 0785.35029

[18] Del Pino, M.-Felmer, P. L., Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 127-149. | MR 1614646 | Zbl 0901.35023

[19] Ding, W. Y.-Ni, W. M., On the existence of a positive entire solution of a semilinear elliptic equation, Arch. Rat. Mech. Anal., 91 (1986), 283-308. | MR 807816 | Zbl 0616.35029

[20] Esteban, M. J.-Lions, P. L., Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, 93 (1982), 1-14. | MR 688279 | Zbl 0506.35035

[21] Gidas, B.-Ni, W.-M.-Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in Rn, Math. Anal. Appl. Part A, Adv. Math. Suppl. Studies, 7A (1981), 369-402. | Zbl 0469.35052

[22] Gui, C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. Part. Diff. Eq., 21 (1996), 787-820. | MR 1391524 | Zbl 0857.35116

[23] Li, Y., Remarks on a semilinear elliptic equations on RN, J. Diff. Eq., 74 (1988), 34-39. | MR 949624 | Zbl 0662.35038

[24] Li, Y. Y., Prescribing scalar curvature on S3, S4 and related problems, J. Funct. Anal., 118 (1993), 43-118. | MR 1245597 | Zbl 0790.53040

[25] Li, Y. Y., On a singularly perturbed elliptic equation, Adv. Diff. Eq., 2 (1997), 955-980. | MR 1606351 | Zbl 1023.35500

[26] Lions, P.-L., The concentration–compactness principle in the calculus of variations: the locally compact case, Part I and II, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109-145 and 223-283. | Zbl 0704.49004

[27] Montecchiari, P., Multiplicity results for a class of Semilinear Elliptic Equations on Rm, Rend. Sem. Mat. Univ. Padova, 95 (1996), 1-36. | MR 1405365 | Zbl 0866.35043

[28] Musina, R., Multiple positive solutions of a scalar field equation in Rn, Top. Meth. Nonlinear Anal., 7 (1996), 171-185. | MR 1422010 | Zbl 0909.35042

[29] Ni, W. M., Some aspects of semilinear elliptic equations, Nonlinear diffusion equations and their equilibrium states (W. M. Ni, L. A. Peletier and J. Serrin, eds.) Springer Verlag, Berlin (1988). | MR 956087 | Zbl 0676.35026

[30] Rabinowitz, P. H., A note on a semilinear elliptic equation on Rn, Nonlinear Analysis, a tribute in honour of Giovanni Prodi (A. Ambrosetti and A. Marino, eds., Quaderni della Scuola Normale Superiore, Pisa) (1991). | MR 1205369 | Zbl 0836.35045

[31] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. | MR 1162728 | Zbl 0763.35087

[32] Séré, E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 561-590. | MR 1249107 | Zbl 0803.58013

[33] Strauss, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1979), 149-162. | MR 454365 | Zbl 0356.35028

[34] Stuart, C. A., Bifurcation in LpRn for a semilinear elliptic equation, Proc. London Math. Soc., 57 (1988), 511-541. | MR 960098 | Zbl 0673.35005