Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau in dimensione qualunque
Alberti, Giovanni
Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001), p. 289-310 / Harvested from Biblioteca Digitale Italiana di Matematica

We describe an approach via Γ-convergence to the asymptotic behaviour of (minimizers of) complex Ginzburg-Landau functionals in any space dimension, summarizing the results of a joint research with S. Baldo and C. Orlandi [ABO1-2].

Publié le : 2001-06-01
@article{BUMI_2001_8_4B_2_289_0,
     author = {Giovanni Alberti},
     title = {Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau in dimensione qualunque},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4-A},
     year = {2001},
     pages = {289-310},
     zbl = {1036.49021},
     mrnumber = {1831990},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_2_289_0}
}
Alberti, Giovanni. Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau in dimensione qualunque. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 289-310. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_2_289_0/

[AB] Alberti, G.-Bellettini, G., A non-local anisotropic model for phase transitions. Asymptotic behaviour of rescaled energies, European J. Appl. Math., 9 (1998), 261-284. | MR 1634336 | Zbl 0932.49018

[Al] Alberti, G., Variational models for phase transitions. An approach via Γ-convergence, Differential equations and calculus of variations. Topics on geometrical evolution problems and degree theory (Pisa 1996), 95-114, edito da G. Buttazzo et al., Springer-Verlag, Berlin-Heidelberg, 2000. | MR 1757697 | Zbl 0957.35017

[ABO1] Alberti, G.-Baldo, S.-Orlandi, G., Functions with prescribed singularities, Preprint 2000. | MR 2002215 | Zbl 1033.46028

[ABO1] Alberti, G.-Baldo, S.-Orlandi, G., Variational convergence for functionals of Ginzburg-Landau type, Lavoro in preparazione. | Zbl 1160.35013

[AS] Ambrosio, L.-Soner, H. M., A measure-theoretic approach to higher codimension mean curvature flows, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 27-49. | MR 1655508 | Zbl 1043.35136

[BO] Baldo, S.-Orlandi, G., Codimension one minimal cycles with coefficients in Z or Zp, and variational functionals on fibered spaces, J. Geom. Anal., 9 (1999), 547-568. | MR 1757578 | Zbl 0996.49024

[Ba] Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1977), 337-403. | MR 475169 | Zbl 0368.73040

[BZ] Bethuel, F.-Zheng, X. M., Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80 (1988), 60-75. | MR 960223 | Zbl 0657.46027