Le equazioni di evoluzione dei continui ferromagnetici
Podio-Guidugli, P.
Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001), p. 31-44 / Harvested from Biblioteca Digitale Italiana di Matematica

This expository paper is meant to be a faithful account the invited lecture I gave in Naples on September 14, 1999, during the 16th Congress of U.M.I., the Italian Mathematical Union. In Section 2, I consider the Gilbert equation, the parabolic equation that rules the evolution of the magnetization vector in a rigid ferromagnet. Among the issues I here discuss are the relations of the Gilbert equation to the harmonic map equation and its heat flow, the existence of global-in-time weak solutions, and some conjectures on the possible evolutions of singular solutions. Section 3 consists of an abridged presentation of dynamical micromagnetics, a general mathematical model for the dynamics of ferromagnetic bodies undergoing arbitrarily large deformations. In particular, I show how a generalized Gilbert equation can be arrived at, and I briefly discuss equilibria and dissipation mechanisms.

Publié le : 2001-02-01
@article{BUMI_2001_8_4B_1_31_0,
     author = {P. Podio-Guidugli},
     title = {Le equazioni di evoluzione dei continui ferromagnetici},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4-A},
     year = {2001},
     pages = {31-44},
     zbl = {1039.74014},
     mrnumber = {1821396},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_1_31_0}
}
Podio-Guidugli, P. Le equazioni di evoluzione dei continui ferromagnetici. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 31-44. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_1_31_0/

[1] Alouges, F.-Soyeur, A., On global weak solutions for Landau-Lifshitz equations:existence and nonuniqueness, Nonlinear Anal. Theory, Meth. Appl., 18 (1992), 1071. | MR 1167422 | Zbl 0788.35065

[2] Baryakthar, V. G.-Ivanov, B. A.-Sukstanskii, A. L.-Melikhov, E. Yu., Soliton relaxation in magnets, Phys. Rev. B, 56 (1997), 619.

[3] Bertsch, M.-Dal Passo, R.-Van Der Hout, R., Nonuniqueness for the heat flow ofharmonic maps on the disk, Quad. I.A.C.-C.N.R. 9/1999. | Zbl 1006.35050

[4] Bertsch, M.-Podio-Guidugli, P.-Valente, V., On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest. I.A.C. Quad.1/1999, in corso di stampa su Annali Mat. Pura Appl. | Zbl 1097.74017

[5] Bethuel, F.-Coron, J.-M.-Ghidaglia, J. M.-Soyeur, A., Heat flows and relaxedenergies for harmonic maps, In Nonlinear Diffusion Equations and their Equilibrium States, Gregynog, Birkhäuser (1990). | Zbl 0795.35053

[6] Brezis, H.-Coron, J.-M.-Lieb, E. H., Harmonic maps with defects, Comm. Math.Phys., 107 (1986), 649. | MR 868739 | Zbl 0608.58016

[7] Brown, W. F., MAGNETOELASTIC INTERACTIONS, SPRINGER-VERLAG (1966).

[8] Brown, W. F., MICROMAGNETICS, KRIEGER, 1978.

[9] Chang, K.-C.-Ding, W.-Y.-Ye, R., Finite-time blow-up of the heat flow of harmonicmaps from surfaces, J. Differential Geometry, 36 (1992), 507. | MR 1180392 | Zbl 0765.53026

[10] Chen, Y.-Struwe, M., Existence and partial regularity results for the heat flow forharmonic maps, Math. Z., 201 (1989), 83. | MR 990191 | Zbl 0652.58024

[11] Coron, J.-M., Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. Henri Poincaré, 7 (1990), 335. | MR 1067779 | Zbl 0707.58017

[12] De Simone, A.-Podio-Guidugli, P., Inertial and self interactions in structured continua: liquid crystals and magnetostrictive solids, MECCANICA, 30 (1995), 629. | MR 1360976 | Zbl 0835.73060

[13] De Simone, A.-Podio-Guidugli, P., On the continuum theory of deformable ferromagnetic solids, Arch. Rational Mech. Anal., 136 (1996), 201. | MR 1423008 | Zbl 1002.74521

[14] De Simone, A.-Podio-Guidugli, P., Pointwise balances and the construction of stress fields in dielectrics, Math. Models & Methods Appl. Sci., 7 (1997), 477. | Zbl 0889.73060

[15] Freire, A., Uniqueness for the harmonic map flow from surfaces to general targets, Comment. Math. Helv., 70 (1995), 310. | MR 1324632 | Zbl 0831.58018

[16] Gilbert, T. L., A Lagrangian formulation of the gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955) 1243.

[17] Hardt, R. M., Singularities of harmonic maps, Bull. Amer. Math. Soc., 34 (1997), 15. | MR 1397098 | Zbl 0871.58026

[18] Hong, M.-C., Some new examples for nonuniqueness of the evolution problem of harmonic maps, Comm. Anal. Geom., 6 (1998), 779. | MR 1664892 | Zbl 0949.58016

[19] Landau, L.-Lifshitz, E., On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjet., 8 (1935), 153. Ristampato alle pp. 101-114 di «Collected Papers of L.D. Landau», D.Ter Haar Ed., Pergamon Press (1965). | Zbl 0012.28501

[20] Podio-Guidugli, P., Inertia and invariance, Ann. Mat. Pura Appl., 172 (1997),103-124. | MR 1621147 | Zbl 0949.74003

[21] Podio-Guidugli, P., On dissipation mechanisms in micromagnetics, inviato per la pubbl. (2000).

[22] Podio-Guidugli, P.-Valente, V., Existence of global weak solutions to a modified Landau-Lifshitz equation, in preparazione (1999).

[23] Struwe, M., Geometric evolution problems of «Nonlinear Partial Differential Equations in Differential Geometry», IAS Park City Math. Ser., Vol. 2, Am. Math. Soc. (1996), 257. | MR 1369591 | Zbl 0847.58012

[24] Visintin, A., On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69. | MR 839320 | Zbl 0613.35018

[25] Visintin, A., Modified Landau-Lifshitz equation for ferromagnetism, Physica B, 233 (1997), 365. | Zbl 0613.35018