This expository paper is meant to be a faithful account the invited lecture I gave in Naples on September 14, 1999, during the 16th Congress of U.M.I., the Italian Mathematical Union. In Section 2, I consider the Gilbert equation, the parabolic equation that rules the evolution of the magnetization vector in a rigid ferromagnet. Among the issues I here discuss are the relations of the Gilbert equation to the harmonic map equation and its heat flow, the existence of global-in-time weak solutions, and some conjectures on the possible evolutions of singular solutions. Section 3 consists of an abridged presentation of dynamical micromagnetics, a general mathematical model for the dynamics of ferromagnetic bodies undergoing arbitrarily large deformations. In particular, I show how a generalized Gilbert equation can be arrived at, and I briefly discuss equilibria and dissipation mechanisms.
@article{BUMI_2001_8_4B_1_31_0, author = {P. Podio-Guidugli}, title = {Le equazioni di evoluzione dei continui ferromagnetici}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4-A}, year = {2001}, pages = {31-44}, zbl = {1039.74014}, mrnumber = {1821396}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_1_31_0} }
Podio-Guidugli, P. Le equazioni di evoluzione dei continui ferromagnetici. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 31-44. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_1_31_0/
[1] On global weak solutions for Landau-Lifshitz equations:existence and nonuniqueness, Nonlinear Anal. Theory, Meth. Appl., 18 (1992), 1071. | MR 1167422 | Zbl 0788.35065
- ,[2] Soliton relaxation in magnets, Phys. Rev. B, 56 (1997), 619.
- - - ,[3] Nonuniqueness for the heat flow ofharmonic maps on the disk, Quad. I.A.C.-C.N.R. 9/1999. | Zbl 1006.35050
- - ,[4] On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest. I.A.C. Quad.1/1999, in corso di stampa su Annali Mat. Pura Appl. | Zbl 1097.74017
- - ,[5] Heat flows and relaxedenergies for harmonic maps, In Nonlinear Diffusion Equations and their Equilibrium States, Gregynog, Birkhäuser (1990). | Zbl 0795.35053
- - - ,[6] Harmonic maps with defects, Comm. Math.Phys., 107 (1986), 649. | MR 868739 | Zbl 0608.58016
- - ,[7]
, MAGNETOELASTIC INTERACTIONS, SPRINGER-VERLAG (1966).[8] 1978.
, MICROMAGNETICS, KRIEGER,[9] Finite-time blow-up of the heat flow of harmonicmaps from surfaces, J. Differential Geometry, 36 (1992), 507. | MR 1180392 | Zbl 0765.53026
- - ,[10] Existence and partial regularity results for the heat flow forharmonic maps, Math. Z., 201 (1989), 83. | MR 990191 | Zbl 0652.58024
- ,[11] Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. Henri Poincaré, 7 (1990), 335. | MR 1067779 | Zbl 0707.58017
,[12] Inertial and self interactions in structured continua: liquid crystals and magnetostrictive solids, MECCANICA, 30 (1995), 629. | MR 1360976 | Zbl 0835.73060
- ,[13] On the continuum theory of deformable ferromagnetic solids, Arch. Rational Mech. Anal., 136 (1996), 201. | MR 1423008 | Zbl 1002.74521
- ,[14] Pointwise balances and the construction of stress fields in dielectrics, Math. Models & Methods Appl. Sci., 7 (1997), 477. | Zbl 0889.73060
- ,[15] Uniqueness for the harmonic map flow from surfaces to general targets, Comment. Math. Helv., 70 (1995), 310. | MR 1324632 | Zbl 0831.58018
,[16] A Lagrangian formulation of the gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955) 1243.
,[17] Singularities of harmonic maps, Bull. Amer. Math. Soc., 34 (1997), 15. | MR 1397098 | Zbl 0871.58026
,[18] Some new examples for nonuniqueness of the evolution problem of harmonic maps, Comm. Anal. Geom., 6 (1998), 779. | MR 1664892 | Zbl 0949.58016
,[19] On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjet., 8 (1935), 153. Ristampato alle pp. 101-114 di «Collected Papers of L.D. Landau», Ed., Pergamon Press (1965). | Zbl 0012.28501
- ,[20] Inertia and invariance, Ann. Mat. Pura Appl., 172 (1997),103-124. | MR 1621147 | Zbl 0949.74003
,[21] On dissipation mechanisms in micromagnetics, inviato per la pubbl. (2000).
,[22] Existence of global weak solutions to a modified Landau-Lifshitz equation, in preparazione (1999).
- ,[23] Geometric evolution problems of «Nonlinear Partial Differential Equations in Differential Geometry», IAS Park City Math. Ser., Vol. 2, Am. Math. Soc. (1996), 257. | MR 1369591 | Zbl 0847.58012
,[24] On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math., 2 (1985), 69. | MR 839320 | Zbl 0613.35018
,[25] Modified Landau-Lifshitz equation for ferromagnetism, Physica B, 233 (1997), 365. | Zbl 0613.35018
,