Il lavoro presenta diverse caratterizzazioni degli spazi Lorentz-Zygmund generalizzati (GLZ) , con , , e spazio misurato con misura finita. Dato uno spazio misurato e , otteniamo representazioni equivalenti per la (quasi-) norma dello spazio GLZ . Inoltre, se è uno spazio misurato con misura finita e , viene presentata in termini di decomposizioni una norma equivalente per lo spazio . Si dimostra che le norme equivalenti considerate per , con uno spazio a misura finita, e la norma di decomposizione in possono essere utilizzate per ottenere semplici dimostrazioni di alcuni risultati di estrapolazione concernenti questi spazi.
@article{BUMI_2001_8_4B_1_239_0, author = {J. S. Neves}, title = {On decompositions in generalised Lorentz-Zygmund spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {4-A}, year = {2001}, pages = {239-267}, zbl = {1178.46029}, mrnumber = {1821406}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_1_239_0} }
Neves, J. S. On decompositions in generalised Lorentz-Zygmund spaces. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 239-267. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_1_239_0/
[1] | MR 450957 | Zbl 0314.46030
, Sobolev Spaces, Academic Press, New York, 1975.[2] On Lorentz-Zygmund spaces, Dissertationes Math. (Rozprawy Mat.), 175 (1980), 1-72. | MR 576995 | Zbl 0456.46028
- ,[3] 129 of Pure and Applied Mathematics, Academic Press, New York, 1988. | MR 928802 | Zbl 0647.46057
- , Interpolation of Operators, volume[4] Double exponential integrability of convolution operators in generalised Lorentz-Zygmund spaces, Indiana Univ. Math. J., 44 (1995), 19-43. | MR 1336431 | Zbl 0826.47021
- - ,[5] On embeddings of logarithmic Bessel potential spaces, J. Funct. Anal., 146 (1997), 116-150. | MR 1446377 | Zbl 0934.46036
- - ,[6] Norms of embeddings of logarithmic Bessel potential spaces, Proc. Amer. Math. Soc., 126 (8) (1998), 2417-2425. | MR 1451796 | Zbl 0895.46020
- - ,[7] On Decomposition in Exponential Orlicz Spaces, Math. Nachr., 213 (2000), 77-88. | MR 1755247 | Zbl 0971.46019
- ,[8] 120 of Cambridge Tracts in Mathematics, Cambridge University Press, 1996. | MR 1410258 | Zbl 0865.46020
- , Function Spaces, Entropy Numbers and Differential Operators, volume[9] On decompositions in , Preprint n. 129, Academy of Sciences of the Czech Republic, 1998.
- ,[10] Global limiting embeddings of logarithmic Bessel potential spaces, Math. Inequal. Appl., 1 (1998) 565-584. | MR 1646690 | Zbl 0934.46034
- ,[11] Extrapolation theory with applications, Mem. Amer. Math. Soc., 89 (440) (1991). | MR 1046185 | Zbl 0733.46040
- ,[12] | MR 482102 | Zbl 0364.46022
- - , Function Spaces, Noordhoff International Publishing, Leyden, Academia, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1977.[13] Some new functional spaces, Ann. Math., 1 (1951), 411-429. | MR 33449 | Zbl 0043.11302
,[14] 1580 of Lecture Notes in Mathematics, Springer Verlag, Berlin, Heidelberg, 1994. | MR 1301774 | Zbl 0852.46059
, Extrapolation and optimal decomposition, volume[15] | Zbl 0278.26001
, Real and Complex Analysis, Mcgraw-Hill Book Co., Singapore, 3rd edition, 1986.[16] | MR 290095 | Zbl 0207.13501
, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.[17] 123 of Pure and Applied Mathematics, Academic Press, San Diego, 1986. | MR 869816 | Zbl 0621.42001
, Real Variable Methods in Harmonic Analysis, volume[18] 18 of North-Holland Mathematical Library. VEB Deutscher Verlag der Wissenschaften, Berlin 1978; North-Holland Publishing Co., 1978. | Zbl 0387.46032
, Interpolation Theory, Function Spaces, Differential Operators, volume[19] Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces, Proc. London Math. Soc. (3), 66 (3) (1993), 589-618. | MR 1207550 | Zbl 0792.46024
,[20] Notes on Fourier analysis (XXIX): An Extrapolation Theorem, J. Math. Soc. Japan, 3 (1951). | MR 48619 | Zbl 0045.17901
, , Weakly Differentiable Functions, Springer-Verlag, 1989. , Trigonometric Series, volume II, Cambridge University Press, Cambridge, 2nd edition, 1959.