Operator semigroups in Banach space theory
Aiena, Pietro ; González, Manuel ; Martínez-Abejón, Antonio
Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001), p. 157-205 / Harvested from Biblioteca Digitale Italiana di Matematica

In questo lavoro, motivati dalla teoria di Fredholm in spazi di Banach e dalla cosiddetta teoria degli ideali di operatori nel senso di Pietsch, viene definito un nuovo concetto di semigruppo di operatori. Questa nuova definizione include quella di molte classi di operatori già studiate in letteratura, come la classe degli operatori di semi-Fredholm, quella degli operatori tauberiani ed altre ancora. Inoltre permette un nuovo ed unificante approccio ad una serie di problemi in teoria degli operatori su spazi di Banach. Ad un ideale di operatori A vengono associati, in modo naturale, due semigruppi di operatori A+ e A-. In particolare, se W è la classe degli operatori debolmente compatti, il semigruppo di operatori associato W+ è la classe degli operatori tauberiani. Questo lavoro contiene, oltre che una panoramica sulle proprietá, gli esempi e le applicazioni di tali semigruppi, diversi nuovi risultati. Vengono inoltre posti in evidenza una serie di nuovi problemi aperti che meritano di essere studiati

Publié le : 2001-02-01
@article{BUMI_2001_8_4B_1_157_0,
     author = {Pietro Aiena and Manuel Gonz\'alez and Antonio Mart\'\i nez-Abej\'on},
     title = {Operator semigroups in Banach space theory},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {4-A},
     year = {2001},
     pages = {157-205},
     zbl = {1072.47037},
     mrnumber = {1821404},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_1_157_0}
}
Aiena, Pietro; González, Manuel; Martínez-Abejón, Antonio. Operator semigroups in Banach space theory. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 157-205. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_1_157_0/

[1] Aiena, P., An internal characterization of inessential operators, Proc. Amer. Math. Soc., 102 (1988), 625-626. | MR 928992 | Zbl 0691.47024

[2] Aiena, P., On Riesz and inessential operators, Math. Z., 201 (1989), 521-528. | MR 1004172 | Zbl 0702.47008

[3] Aiena, P.-González, M., Essentially incomparable Banach spaces and Fredholm theory, Proc. R. Ir. Acad. A, 93 (1993), 49-59. | MR 1241839 | Zbl 0790.46010

[4] Aiena, P.-González, M., On the perturbation classes of semi-Fredholm and Fredholm operators, Rendiconti Circ. Mat. Palermo Suppl., 40 (1996), 37-46. | MR 1407075 | Zbl 0882.47002

[5] Aiena, P.-González, M., On inessential and improjective operators, Studia Math., 131 (1998), 271-287. | MR 1644476 | Zbl 0937.47013

[6] Aiena, P.-González, M., Examples of improjective operators, Math. Z., to appear. | MR 1750932 | Zbl 0960.47009

[7] Aiena, P.-González, M.-Martínez-Abejón, A., Incomparable Banach spaces and semigroups of operators, Preprint, 1999.

[8] Aiena, P.-González, M.-Martínez-Abejón, A., On the operators which are invertible modulo an operator ideal, Preprint, 1999. | MR 1860060 | Zbl 1010.47044

[9] Alvarez, T.-González, M., Some examples of tauberian operators, Proc. Amer. Math. Soc., 111 (1991), 1023-1027. | MR 1033955 | Zbl 0733.47017

[10] Alvarez, T.-González, M.-Onieva, V. M., Totally incomparable Banach spaces and three-space ideals, Math. Nachr., 131 (1987), 83-88. | MR 908801 | Zbl 0659.46009

[11] Alvarez, T.-González, M.-Onieva, V. M., Characterizing two classes of operator ideals, in Contribuciones Matemáticas. Homenaje Prof. Antonio Plans, Univ. Zaragoza 1990, 7-21.

[12] Astala, K., On measures of noncompactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fennicae Ser. A I Math., Dissertationes, 29 (1980), 42 pp. | MR 575533 | Zbl 0426.47001

[13] Astala, K.-Tylli, H.-O., Seminorms related to weak compactness and to tauberian operators, Math. Proc. Cambridge Phil. Soc., 107 (1990), 365-375. | MR 1027789 | Zbl 0709.47009

[14] Atkinson, F., Relatively regular operators, Acta Sci. Math. Szeged, 15 (1953), 38-56. | MR 56835 | Zbl 0052.12502

[15] Basallote, M., Representabilidad finita por cocientes y operadores, Doctoral Thesis, Univ. Sevilla, 1998.

[16] Beauzamy, B., Opérateurs uniformément convexifiants, Studia Math., 57 (1976), 1023-1027. | MR 430844 | Zbl 0372.46016

[17] Beauzamy, B., Introduction to Banach spaces and their Geometry, North Holland68, 1985. | MR 889253 | Zbl 0585.46009

[18] Bellenot, S., The J-sum of Banach spaces, J. Funct. Anal., 48 (1982), 95-106. | MR 671317 | Zbl 0494.46015

[19] Bombal, F.-Fierro, C., Compacidad débil en espacios de Orlicz de funciones vectoriales, Rev. Real Acad. Ciencias Madrid, 78 (1984), 157-163. | MR 799701 | Zbl 0621.46034

[20] Bombal, F.-Hernando, B., A double-dual characterization of Rosenthal and semitauberian operators, Proc. R. Ir. Acad. A, 95 (1995), 69-75. | MR 1369046 | Zbl 0856.47003

[21] Bourgain, J.-Rosenthal, H. P., Applications of the theory of semi-embeddings to Banach space theory, J. Funct. Anal., 52 (1983), 149-188. | MR 707202 | Zbl 0541.46020

[22] Bonet, J.-Ramanujan, M., Two classes of operators between Fréchet spaces, Functional analysis (Trier 1994), 53-58, de Gruyter, 1996. | MR 1420437 | Zbl 0881.47003

[23] Caradus, S.-Pfaffenberger, W.-Yood, B., Calkin algebras and algebras of operators in Banach spaces, M. Dekker Lecture Notes in Pure & Appl. Math.9, 1974. | Zbl 0299.46062

[24] Casazza, P. G.-Shura, T. J., Tsirelson space, Springer Lectures Notes in Math.1363, 1989. | MR 981801 | Zbl 0709.46008

[25] Castillo, J. M. F.-González, M., Three-space problems in Banach space theory, Springer Lecture Notes in Math.1667, 1997. | MR 1482801 | Zbl 0914.46015

[26] Cross, R. W., Linear transformations of tauberian type in normed spaces, Note di Mat. volume dedicated to Prof. Köthe (1980), 193-203. | MR 1193523 | Zbl 0780.47002

[27] Cross, R. W., On a theorem of Kalton and Wilansky concerning tauberian operators, J. Math. Anal. Appl., 171 (1992), 156-170. | MR 1192500 | Zbl 0780.47001

[28] Cross, R. W., A characterisation of almost-reflexive normed spaces, Proc. R. Ir. Acad. A, 92 (1992), 225-228. | MR 1204221 | Zbl 0741.46005

[29] Cross, R. W., F+-operators are tauberian, Quaestiones Math., 18 (1995), 129-132. | MR 1234458 | Zbl 0804.47001

[30] Cross, R. W., Multivalued linear operators, M. Dekker Pure and Appl. Math. Series213, 1998. | MR 1631548 | Zbl 0911.47002

[31] Davis, W. J.-Figiel, T.-Johnson, W. B.-Pełcczyński, A., Factoring weakly compact operators, J. Funct. Anal., 19 (1974), 311-327. | MR 355536 | Zbl 0306.46020

[32] Diestel, J.-Uhl, J., Vector measures, Amer. Math. Soc., Math. Surveys15, 1977. | MR 453964 | Zbl 0369.46039

[33] Ghoussoub, N., Some remarks concerning Gδ-embeddings and semi-quotient maps, Longhorn Notes, Univ. Texas (1982-83), 109-122. | MR 832220

[34] Ghoussoub, N.-Maurey, B., Gδ-embeddings in Hilbert space II, J. Funct. Anal., 78 (1988), 271-305. | MR 943500 | Zbl 0682.46013

[35] Ghoussoub, N.-Rosenthal, H.P., Martingales, Gδ-embeddings and quotients of L1, Math. Ann., 264 (1983), 321-332. | MR 714107 | Zbl 0511.46017

[36] Goldberg, S., Unbounded linear operators, McGraw-Hill, 1966. | MR 200692 | Zbl 0148.12501

[37] González, M., Properties and applications of tauberian operators, Extracta Math., 5 (1990), 91-107. | MR 1125675 | Zbl 0748.47001

[38] González, M., Dual results of factorization for operators, Ann. Acad. Sci. Fennicae, 18 (1993), 3-11. | MR 1207890 | Zbl 0795.46013

[39] González, M., On essentially incomparable Banach spaces, Math. Z., 215 (1994), 621-629. | MR 1269493 | Zbl 0791.46011

[40] González, M.-Martínez-Abejón, A., Supertauberian operators and perturbations, Arch. Math., 64 (1995), 423-433.

[41] González, M.-Martínez-Abejón, A., Tauberian operators on L1μ-spaces, Studia Math., 125 (1997), 289-303.

[42] González, M.-Martínez-Abejón, A., Ultrapowers and semi-Fredholm operators, Bolletino U.M.I. B, 11 (1997), 415-433.

[43] González, M.-Martínez-Abejón, A., Quotients of L1 by reflexive subspaces, Extracta Math., 12 (1997), 139-143.

[44] González, M.-Martínez-Abejón, A., Lifting unconditionally converging series and semigroups, Bull. Austral. Math. Soc., 57 (1998), 135-146.

[45] González, M.-Martínez-Abejón, A., Local reflexivity of dual Banach spaces, Pacific J. Math., 189 (1999), 263-278.

[46] González, M.-Martínez-Abejón, A., Tauberian operators on L1μ and ultrapowers, Rendiconti Circ. Mat. Palermo Suppl., 56 (1998), 128-138.

[47] González, M.-Martínez-Abejón, A., Ultrapowers and semigroups of operators, Integral Equations Operator Theory, to appear.

[48] González, M.-Martínez-Abejón, A., Ultrapowers of L1μ and the subsequence splitting property, Preprint, 1998.

[49] González, M.-Martinón, A., Operational quantities derived from the norm and measures of noncompactness, Proc. R. Ir. Acad. A, 91 (1991), 63-70. | MR 1173159 | Zbl 0760.47021

[50] González, M.-Martinón, A., Operational quantities derived from the norm and generalized Fredholm theory, Comment. Math. Univ. Carolinae, 32 (1991) 645-657. | MR 1159811 | Zbl 0762.47005

[51] González, M.-Martinón, A., Fredholm theory and space ideals, Boll. U.M.I. B, 7 (1993), 473-488. | Zbl 0784.47022

[52] González, M.-Martinón, A., On incomparability of Banach spaces, Banach Center Publ., 30 (1994), 161-174. | Zbl 0819.46009

[53] González, M.-Martinón, A., Operational quantities characterizing semi-Fredholm operators, Studia Math., 114 (1995), 13-27. | MR 1330214 | Zbl 0830.47008

[54] González, M.-Onieva, V. M., On incomparability of Banach spaces, Math. Z., 192 (1986), 581-585. | MR 847007 | Zbl 0602.46015

[55] González, M.-Onieva, V. M., Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. R. Ir. Acad. A, 88 (1988), 35-38. | MR 974281 | Zbl 0633.47029

[56] González, M.-Onieva, V. M., Semi-Fredholm operators and semigroups associated with some classical operator ideals II, Proc. R. Ir. Acad. A, 88 (1988), 119-124. | MR 986218 | Zbl 0645.47038

[57] González, M.-Onieva, V. M., Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Phil. Soc., 105 (1989), 117-121. | MR 966145 | Zbl 0633.46025

[58] González, M.-Onieva, V. M., Characterizations of tauberian operators and other semigroups of operators, Proc. Amer. Math. Soc., 108 (1990), 399-405. | MR 994777 | Zbl 0704.47016

[59] González, M.-Saksman, E.-Tylli, H.-O., Representing non-weakly compact operators, Studia Math., 113 (1995), 265-282. | MR 1330211 | Zbl 0832.47039

[60] Gowers, W. T., A solution to Banach's hyperplane problem, Bull. London Math. Soc., 26 (1994), 523-530. | MR 1315601 | Zbl 0838.46011

[61] Gowers, W. T.-Maurey, B., The unconditional basic sequence problem, J. Amer. Math. Soc., 6 (1993), 851-874. | MR 1201238 | Zbl 0827.46008

[62] Grothendieck, A., Sur les applications linéaires faiblement compactes d'espaces du type CK, Canadian J. Math., 5 (1953), 129-173. | MR 58866 | Zbl 0050.10902

[63] Harte, R., Invertibility and singularity for bounded linear operators, M. Dekker, 1987. | MR 920812 | Zbl 0636.47001

[64] Heinrich, S., Finite representability of operators, Proc. Int. Conf. operators algebras, ideals and applications, Leipzig (1977), 33-39. | MR 528256 | Zbl 0405.47028

[65] Heinrich, S., Ultraproducts in Banach space Theory, J. Reine Angew. Math., 313 (1980), 72-104. | MR 552464 | Zbl 0412.46017

[66] Heinrich, S., Closed operator ideals and interpolation, J. Funct. Anal., 35 (1980), 397-411. | MR 563562 | Zbl 0439.47029

[67] Herman, R. H., Generalizations of weakly compact operators, Trans. Amer. Math. Soc., 132 (1968), 377-386. | MR 223929 | Zbl 0159.43004

[68] Holub, J. R., Characterizations of tauberian and related operators on Banach spaces, J. Math. Anal. Appl., 178 (1993), 280-288. | MR 1231742 | Zbl 0804.47002

[69] Kalton, N.-Wilansky, A., Tauberian operators in Banach spaces, Proc. Amer. Math. Soc., 57 (1976), 251-255. | MR 473896 | Zbl 0304.47023

[70] Kleinecke, D., Almost-finite, compact, and inessential operators, Proc. Amer. Math. Soc., 14 (1963), 863-868. | MR 155197 | Zbl 0117.34201

[71] Lebow, A.-Schechter, M., Semigroups of operators and measures of noncompactness, J. Funct. Anal., 7 (1971), 1-26. | MR 273422 | Zbl 0209.45002

[72] Lindenstrauss, J.-Tzafriri, L., Classical Banach Spaces I. Sequence spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1977. | MR 500056 | Zbl 0362.46013

[73] Lohman, R., A note on Banach spaces containing l1, Canad. Math. Bull., 19 (1976), 365-367. | MR 430748 | Zbl 0342.46006

[74] Lotz, H.-Peck, N.-Porta, H., Semi-embeddings of Banach spaces, Proc. Edinburgh Math. Soc., 12 (1979), 233-240. | MR 560985 | Zbl 0405.46013

[75] Martin, D. H.-Swart, J., A characterisation of semi-Fredholm operators defined on an almost-reflexive normed spaces, Proc. R. Ir. Acad. A, 86 (1986), 91-93. | MR 865107 | Zbl 0587.47015

[76] Martínez-Abejón, A., Semigrupos de operadores y ultrapotencias, Ph. D. Thesis Univ. Cantabria, 1994.

[77] Martínez-Maurica, J.-Pellón, T., Non-archimedian tauberian operators, Proc. Conf. on p-adic analysis Hengelhoef (1986), 101-111. | MR 921862 | Zbl 0628.46078

[78] Martinón, A., Cantidades operacionales en teoria de Fredholm, Ph. D. Thesis Univ. La Laguna, 1989. | MR 1067932

[79] Neidinger, R., Properties of tauberian operators in Banach spaces, Ph. D. Thesis Univ. Texas at Austin, 1984.

[80] Neidinger, R.-Rosenthal, H. P., Norm-attainment of linear functionals on subspaces and characterizations of tauberian operators, Pacific J. Math., 118 (1985), 215-228. | MR 783025 | Zbl 0537.46018

[81] Pietsch, A., Inessential operators in Banach spaces, Integral Equations and Operator Theory, 1 (1978), 589-591. | MR 516770 | Zbl 0399.47040

[82] Pietsch, A., Operator ideals, North-Holland, Amsterdam, New York, Oxford, 1980. | MR 582655 | Zbl 0434.47030

[83] Rosenthal, H. P., On totally incomparable Banach spaces, J. Funct. Anal., 4 (1969), 167-175. | MR 248506 | Zbl 0184.15004

[84] Rosenthal, H. P., On wide-s sequences and their applications to certain classes of operators, Pacific J. Math., 189 (1999), 311-338. | MR 1696126 | Zbl 0932.46007

[85] Schachermayer, W., For a Banach space isomorphic to its square the Radon-Nikodym property and the Krein-Milman property are equivalent, Studia Math., 81 (1985), 329-339. | MR 808576 | Zbl 0631.46019

[86] Schechter, M., Quantities related to strictly singular operators, Indiana Univ. Math. J., 21 (1972), 1061-1071. | MR 295103 | Zbl 0274.47007

[87] Tacon, D. G., Generalized semi-Fredholm transformations, J. Austral. Math. Soc. A, 34 (1983), 60-70. | MR 683179 | Zbl 0531.47011

[88] Tacon, D. G., Generalized Fredholm transformations, J. Austral. Math. Soc. A, 37 (1984), 89-97. | MR 742246 | Zbl 0605.47010

[89] Talagrand, M., The three-space problem for L1, J. Amer. Math. Soc., 3 (1990), 9-29. | MR 1013926 | Zbl 0727.46012

[90] Tarafdar, E., On further properties of improjective operators, J. Austral. Math. Soc., 14 (1972), 352-363. | MR 315497 | Zbl 0251.47037

[91] Taylor, A. E.-Lay, D. C., Introduction to functional analysis, 2nd ed., Wiley, 1980. | MR 564653 | Zbl 0501.46003

[92] Tylli, H.-O., Two approximation conditions relative to closed operator ideals, Preprint, 1990.

[93] Weis, L., On perturbations of Fredholm operators in Lpμ-spaces, Proc. Amer. Math. Soc., 67 (1977), 287-292. | MR 467377 | Zbl 0377.46016

[94] Weis, L., Perturbation classes of semi-Fredholm operators, Math. Z., 178 (1981), 429-442. | MR 635212 | Zbl 0541.47010

[95] Whitley, R. J., Strictly singular operators and their conjugates, Trans. Amer. Math. Soc., 113 (1964), 252-261. | MR 177302 | Zbl 0124.06603

[96] Yang, K. W., The generalized Fredholm operators, Trans. Amer. Math. Soc., 216 (1976), 313-326. | MR 423114 | Zbl 0297.47027

[97] Yang, K. W., Operator invertible modulo the weakly compact operators, Pacific J. Math., 71 (1977), 559-564. | MR 461193 | Zbl 0359.47019

[98] Zemanek, J., Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, Studia Math., 80 (1984), 219-234. | MR 783991 | Zbl 0556.47008