Si considera l'insorgere della convezione naturale in un mezzo poroso (Horton-Rogers-Lapwood problem), assumendo che la viscosità del fluido dipenda dalla temperatura. Adoperando il metodo diretto di Liapunov, si effettua l'analisi della stabilitá non lineare della soluzione di conduzione per i modelli di Darcy e di Forchheimer.
@article{BUMI_2001_8_4B_1_143_0,
author = {F. Capone},
title = {On the onset of convection in porous media: temperature depending viscosity},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {4-A},
year = {2001},
pages = {143-156},
zbl = {1177.76402},
mrnumber = {1821403},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2001_8_4B_1_143_0}
}
Capone, F. On the onset of convection in porous media: temperature depending viscosity. Bollettino dell'Unione Matematica Italiana, Tome 4-A (2001) pp. 143-156. http://gdmltest.u-ga.fr/item/BUMI_2001_8_4B_1_143_0/
[1] --: Theory of fluid flows through natural rocks, Kluwer Academic Publishers (1990). | Zbl 0769.76001
[2] -, Nonlinear stability analysis of convection for fluids with exponentially temperature-dependent viscosity, Acta Mechanica, 107 (1994), 53. | MR 1299152 | Zbl 0846.76033
[3] -, Nonlinear stability analysis of the Bénard problem for fluids with a convex nonincreasing temperature depending viscosity, Continuum Mech. Thermodyn., 7 (1995), 297-309. | MR 1349424 | Zbl 0830.76034
[4] -, On the influence of the Forchheimer term in convective instabilities in porous media for fluids with temperature depending viscosity, Rend. Circolo Mat. Palermo, Serie II, Suppl. 57 (1998), 91-95. | MR 1708498 | Zbl 0962.76524
[5] -, Temperature dependent viscosity and its influence on the onset of convetion in a porous medium, Rend. Acc. Sc. fis. mat. Napoli, vol. LXVI (1999), 159-172. | MR 1771535 | Zbl 0972.76033
[6] , Hydrodynamic and hydromagnetic stability, New York, Dover (1961). | MR 128226 | Zbl 0142.44103
[7] -, Qualitative estimates for partial differential equations. An introduction, Boca Raton, Florida: CRC Press (1996). | MR 1396085 | Zbl 0862.35001
[8] --, Nonlinear equation governing flow in a saturated porous medium, Water Resources Res., 18, 1049-1052 and 19 (1982), 591.
[9] , Stability of fluid motions I-II, Springer Tracts in Natural Philosophy, vols. 27-28 (1976). | MR 449147 | Zbl 0345.76022
[10] -, Convection in porous media, Berlin Heidelberg New York: Springer-Verlag (1992). | MR 1656781 | Zbl 0924.76001
[11] -, Nonlinear convective stability in a porous medium, Studies In Appl. Math. (1996), 273-288. | MR 1378863 | Zbl 0853.76025
[12] , Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica, Ann. Mat. Pura Appl., 78 (1968), 339-364. | MR 229424 | Zbl 0182.29402
[13] , The energy method, stability and nonlinear convection, Berlin Heidelberg New York Tokyo: Springer (1992). | MR 1140924 | Zbl 0743.76006