In questo lavoro studiamo il resto relativo della formula asintotica per gli autovalori di un operatore differenziale in , ottenuta mediante il metodo delle proiezioni spettrali approssimate ([3], Theorem 6.2). In un primo tempo diamo un controesempio di un operatore di Schrödinger con potenziale a crescita algebrica, per il quale il resto non è limitato. Quindi specifichiamo alcune condizioni addizionali da imporre all'operatore in modo da avere un resto infinitesimo.
@article{BUMI_2000_8_3B_3_775_0, author = {Ernesto Buzano}, title = {Some remarks on the Weyl asymptotics by the approximate spectral projection method}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3-A}, year = {2000}, pages = {775-792}, zbl = {0976.35047}, mrnumber = {1801620}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_3_775_0} }
Buzano, Ernesto. Some remarks on the Weyl asymptotics by the approximate spectral projection method. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 775-792. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_3_775_0/
[1] Spectral asymptotics for multi-quasi-elliptic operators in , Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 24 (4) (1997), no. 3, 511-536. | MR 1612397 | Zbl 0897.35056
and ,[2] 92, Akademie Verlag, Berlin, 1996. | MR 1435282 | Zbl 0878.35001
- - , Global hypoellipticity and spectral theory, Mathematical Research, vol.[3] The Weyl calculus with locally temperate metrics and weights, Arkiv for Mat., 24 (1986), 59-79. | MR 852826 | Zbl 0621.47045
,[4] Asymptotic distribution of eigenvalues for hypoelliptic systems in , Math. USSR Sbornik28 (1976), no. 4, 533-552. | Zbl 0381.35063
,[5] New classes of pseudodifferential operators in and some applications, Trans. Moscow Math. Soc., 36 (1979), no. 2, 153-195. | Zbl 0421.35083
,[6] Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Arkiv for Mat.5 (1965), 527-540. | MR 218931 | Zbl 0144.36302
,[7] Asymptotics of the eigenvalues of the Schrodinger operator, Math. USSR Sbornik22 (1974), no. 3, 349-371. | Zbl 0304.35070
,[8] | MR 883081 | Zbl 0616.47040
, Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin, 1987.[9] On the asymptotic distribution of eigenvalues of pseudodifferential operators in , Math. USSR Sbornik 21 (1973), no. 4, 565-583. | Zbl 0295.35068
and ,