Some remarks on the Weyl asymptotics by the approximate spectral projection method
Buzano, Ernesto
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 775-792 / Harvested from Biblioteca Digitale Italiana di Matematica

In questo lavoro studiamo il resto relativo della formula asintotica per gli autovalori di un operatore differenziale in Rn, ottenuta mediante il metodo delle proiezioni spettrali approssimate ([3], Theorem 6.2). In un primo tempo diamo un controesempio di un operatore di Schrödinger con potenziale a crescita algebrica, per il quale il resto non è limitato. Quindi specifichiamo alcune condizioni addizionali da imporre all'operatore in modo da avere un resto infinitesimo.

Publié le : 2000-10-01
@article{BUMI_2000_8_3B_3_775_0,
     author = {Ernesto Buzano},
     title = {Some remarks on the Weyl asymptotics by the approximate spectral projection method},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {775-792},
     zbl = {0976.35047},
     mrnumber = {1801620},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_3_775_0}
}
Buzano, Ernesto. Some remarks on the Weyl asymptotics by the approximate spectral projection method. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 775-792. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_3_775_0/

[1] Boggiatto, P. and Buzano, E., Spectral asymptotics for multi-quasi-elliptic operators in Rn, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 24 (4) (1997), no. 3, 511-536. | MR 1612397 | Zbl 0897.35056

[2] Boggiatto, P.-Buzano, E.-Rodino, L., Global hypoellipticity and spectral theory, Mathematical Research, vol. 92, Akademie Verlag, Berlin, 1996. | MR 1435282 | Zbl 0878.35001

[3] Dencker, N., The Weyl calculus with locally temperate metrics and weights, Arkiv for Mat., 24 (1986), 59-79. | MR 852826 | Zbl 0621.47045

[4] Feĭgin, V. I., Asymptotic distribution of eigenvalues for hypoelliptic systems in Rn, Math. USSR Sbornik28 (1976), no. 4, 533-552. | Zbl 0381.35063

[5] Feĭgin, V. I., New classes of pseudodifferential operators in Rn and some applications, Trans. Moscow Math. Soc., 36 (1979), no. 2, 153-195. | Zbl 0421.35083

[6] Nilsson, N., Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Arkiv for Mat.5 (1965), 527-540. | MR 218931 | Zbl 0144.36302

[7] Rozenbljum, G. V., Asymptotics of the eigenvalues of the Schrodinger operator, Math. USSR Sbornik22 (1974), no. 3, 349-371. | Zbl 0304.35070

[8] Shubin, M. A., Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin, 1987. | MR 883081 | Zbl 0616.47040

[9] Tulovskiĭ, V. N. and Shubin, M. A., On the asymptotic distribution of eigenvalues of pseudodifferential operators in Rn, Math. USSR Sbornik 21 (1973), no. 4, 565-583. | Zbl 0295.35068