On weighted inductive limits of non-Archimedean spaces of continuous functions
Katsaras, A. K. ; Benekas, V.
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 757-774 / Harvested from Biblioteca Digitale Italiana di Matematica

Si studiano alcune proprietà di un certo limite induttivo di spazi non-archimedei di funzioni continue. In particolare, si esamina la completezza di questo limite induttivo e si indaga il problema di quando lo spazio coincide con il proprio inviluppo proiettivo.

Publié le : 2000-10-01
@article{BUMI_2000_8_3B_3_757_0,
     author = {A. K. Katsaras and V. Benekas},
     title = {On weighted inductive limits of non-Archimedean spaces of continuous functions},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {757-774},
     zbl = {0972.46045},
     mrnumber = {1801619},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_3_757_0}
}
Katsaras, A. K.; Benekas, V. On weighted inductive limits of non-Archimedean spaces of continuous functions. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 757-774. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_3_757_0/

[1] Bastin, F., On bornological CV¯X spaces, Arch. Math., 53 (1989), 394-398. | MR 1016004 | Zbl 0693.46022

[2] Bastin, F., Weighted spaces of continuous functions, Bull. Soc. Roy. Sc. Liège, 1 (1990), 1-81. | MR 1039680 | Zbl 0705.46010

[3] Bastin, F.-Ernst, B., A criterion for CVX to be quasinormable, Results in Math., 14 (1988), 223-230. | MR 964041 | Zbl 0705.46011

[4] Bierstedt, K. D., The approximation property for weighted function spaces, Bonner Math. Schriften, 81 (1975), 3-25. | MR 493282 | Zbl 0333.46023

[5] Bierstedt, K. D., Tensor products of weighted spaces, Bonner Math. Schriften, 81 (1975), 26-58. | MR 493283 | Zbl 0333.46024

[6] Bierstedt, K. D.-Bonet, J., Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nach., 135 (1988), 149-180. | MR 944226 | Zbl 0688.46001

[7] Bierstedt, K. D.-Bonet, J., Dual density conditions in (DF)-spaces I, Results in Math., 14 (1988), 242-274. | MR 964043 | Zbl 0688.46002

[8] Bierstedt, K. D.-Bonet, J., Dual density conditions in (DF)-spaces, Bull. Soc. Roy. Sc. Liège, 57 (1988), 567-589. | MR 986374 | Zbl 0688.46003

[9] Bierstedt, K. D.-Bonet, J., Some results on VCX, pp. 181-194 in: T. Terzioglu (Ed.), Advances in the theory of Fréchet spaces, Kluwer Academic Publishers, 1989. | MR 1083564 | Zbl 0716.46026

[10] Bierstedt, K. D.-Bonet, J., Completeness of the (LB)-space VCX, Arch. Math. (Basel), 56 (1991), 281-288. | MR 1091882 | Zbl 0688.46004

[11] Bierstedt, K. D.-Meise, R., Distinguished echelon spaces and the projective description of weighted inductive limits of type VdCX, pp. 169-226 in: Aspects in Mathematics and its Applications, Elsevier Science Publ. B. V., North-Holland Math. Library, 1986. | MR 849552 | Zbl 0645.46027

[12] Bierstedt, K. D.-Meise, R.-Summers, W. H., A projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272 (1982), 107-160. | MR 656483 | Zbl 0599.46026

[13] Bierstedt, K. D.-Meise, R.-Summers, W. H., Köthe sets and Köthe sequence spaces, pp. 27-91 in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Studies, 71, 1982. | MR 691159 | Zbl 0504.46007

[14] Bonet, J., A projective description of weighted inductive limits of spaces of vector valued continuous functions, Collectanea Math., 34 (1983), 115-125. | MR 766993 | Zbl 0708.46037

[15] Bonet, J., On weighted inductive limits of spaces of continuous functions, Math. Z., 192 (1986), 9-20. | MR 835386 | Zbl 0575.46025

[16] Carneiro, J. P. Q., Non-Archimedean weighted approximation (in Portuguese), An. Acad. Bras. Ci., 50 (1) (1978), 1-34. | MR 473806 | Zbl 0399.41033

[17] Carneiro, J. P. Q., Non-Archimedean weighted approximation, pp. 121-131 in: Approximation Theory and Functional Analysis (J. B. Prolla, editor), North-Holland Publ. Co. (Amsterdam), 1979. | MR 553418 | Zbl 0432.41021

[18] De Grande-De Kimpe, N.-Kąkol, J.-Perez-Garcia, C.-Schikhof, W. H., p-adic locally convex inductive limits, pp. 159-222 in: p-adic Functional Analysis, Marcel Dekker, Inc., Lecture Notes in Pure and Applied Mathematics, 192, 1997. | MR 1459211 | Zbl 0889.46063

[19] Ernst, B., On the uniqueness of weighted (DF)-topologies, Bull. Soc. Roy. Sc. de Liège, 5-6 (1987), 451-461. | MR 929910 | Zbl 0645.46028

[20] Ernst, B.-Schettler, P., On weighted spaces with a fundamental sequence of bounded sets, Arch. Math., 47 (1986), 552-559. | MR 871295 | Zbl 0612.46026

[21] Katsaras, A. K.-Beloyiannis, A., Non-Archimedean weighted spaces of continuous functions, Rendiconti di Mat. Serie VII, vol. 16 (1996), 545-562. | MR 1451076 | Zbl 0911.46049

[22] Katsaras, A. K.-Beloyiannis, A., On non-Archimedean weighted spaces of continuous functions, pp. 237-252 in: p-adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics 192, Marcel Dekker, 1997. | MR 1459213 | Zbl 0947.46057

[23] Katsaras, A. K.-Beloyiannis, A., Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian J. Math., Vol. 6, No 1 (1999), 33-44. | MR 1672990 | Zbl 0921.46085

[24] Nachbin, L., Elements of Approximation Theory, Van Nostrand Math. Studies, 14, 1967. | MR 217483 | Zbl 0173.41403

[25] Prolla, J. B., Weighted spaces of vector-valued continuous functions, Ann. Mat. Pura Appl. (4) 89 (1971), 145-158. | MR 308771 | Zbl 0224.46024

[26] Schikhof, W. H., Locally convex spaces over non-spherically complete valued fields I, II, Bul. Soc. Math. Belg., serie B XXXVIII (1986), 187-224. | MR 871313 | Zbl 0615.46071

[27] Van Rooij, A. C. M., Non-Archimedean Functional Analysis, New York and Basel, Marcel Dekker, Inc., 1978. | MR 512894 | Zbl 0396.46061