Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation
Dias, João-Paulo ; Figueira, Mário
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 739-750 / Harvested from Biblioteca Digitale Italiana di Matematica

Si considera il problema di Cauchy per l'equazione (cf. [1]): ϕtt-ϕxx-ϕx2ϕxx+sinϕ=0x,tR×R+. Nella prima parte di questo articolo si dimostra, per dati iniziali particolari, un risultato di «blow-up» della soluzione classica locale (in tempo), seguendo le idee introdotte in [8], [2] ed [4]. Nella seconda parte, viene utilizzato il metodo di compattezza per compensazione (cf. [13], [10] ed [5]) ed una estensione del principio delle regioni invarianti (cf. [12]) per dimostrare l'esistenza di una soluzione debole globale entropica.

Publié le : 2000-10-01
@article{BUMI_2000_8_3B_3_739_0,
     author = {Jo\~ao-Paulo Dias and M\'ario Figueira},
     title = {Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {739-750},
     zbl = {0962.35022},
     mrnumber = {1801606},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_3_739_0}
}
Dias, João-Paulo; Figueira, Mário. Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 739-750. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_3_739_0/

[1] Braun, O. M.-Fei, Z.-Kivshar, Y. S.-Vásquez, L., Kinks in the Klein-Gordon model with anharmonic interatomic interactions: a variational approach, Phys. Letters A, 157 (1991), 241-245.

[2] Dias, J. P.-Figueira, M., On the blow-up of the solutions of a quasilinear wave equation with a semilinear source term, Math. Meth. Appl. Sci., 19 (1996), 1135-1140. | MR 1409543 | Zbl 0857.35085

[3] Dias, J. P.-Figueira, M., Existence d'une solution faible pour une équation d'ondes quasi-linéaires avec un terme de source semi-linéaire, C.R. Acad. Sci. Paris, 322, Série I (1996), 619-624. | MR 1386463 | Zbl 0857.35084

[4] Dias, J. P.-Figueira, M.-Sanchez, L., Formation of singularities for the solutions of some quasilinear wave equations, Equa. dérivées part. et applic., Articles dédiés à J. L. Lions, Gauthier-Villars, Paris, 1998, 453-460. | MR 1648233 | Zbl 0921.35111

[5] Diperna, R. J., Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal., 82 (1983), 27-70. | MR 684413 | Zbl 0519.35054

[6] Douglis, A., Some existence theorems for hyperbolic systems of partial differential equations in two independent variables, Comm. Pure Appl. Math., 5 (1952), 119-154. | MR 52666 | Zbl 0047.09101

[7] Hartman, P.-Winter, A., On hyperbolic differential equations, Amer. J. Math., 74 (1952), 834-864. | MR 51413 | Zbl 0048.33302

[8] Lax, P. D., Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611-613. | MR 165243 | Zbl 0135.15101

[9] Majda, A., Compressible fluid flow and systems of conservation laws in several space variables, Applied Math. Sciences, Vol. 53, Springer, 1984. | MR 748308 | Zbl 0537.76001

[10] Murat, F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. | MR 506997 | Zbl 0399.46022

[11] Rauch, J., Partial differential equations, Graduate texts in Mathematics, Vol. 128, Springer, 1991. | MR 1223093 | Zbl 0742.35001

[12] Smoller, J., Shock waves and reaction-diffusion equations, Grund. math. Wissenschaften, Vol. 258, Springer, 1983. | MR 688146 | Zbl 0508.35002

[13] Tartar, L., Compensated compactness and applications to partial differential equations, Heriot-Watt Sympos., IV, Pitman, New York, 1979, 136-212. | MR 584398 | Zbl 0437.35004